
Embedded Target for the
TI TMS320C2000™ DSP

Platform
For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

User’s Guide
Version 2

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for the TI TMS320C2000™ DSP Platform User’s Guide

© COPYRIGHT 2003–2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2003 Online only New for Version 1.0 (Release 13SP1+)
June 2003 Online only New for Version 1.1 (Release 14)
October 2004 Online only Revised for Version 1.1.1 (Release 14SP1)
December 2004 Online only Revised for Version 1.2 (Release 14SP1+)
March 2005 Online only Revised for Version 1.2.1 (Release 14SP2)
September 2005 Online only Revised for Version 1.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)

Contents

Getting Started

1
What Is the Embedded Target for the TI TMS320C2000

DSP Platform? . 1-2
Suitable Applications . 1-2

Setting Up and Configuring . 1-3
Platform Requirements — Hardware and Operating

System . 1-3
Supported Hardware for Targets . 1-3
Software Requirements . 1-5
Verifying the Configuration . 1-6

Embedded Target for TI C2000 and Code Composer
Studio . 1-9
Default Project Configuration . 1-9

Data Type Support . 1-10

Scheduling and Timing . 1-11
Timer-Based Interrupt Processing . 1-11
Asynchronous Interrupt Processing 1-13

Overview of Creating Models for Targeting 1-18
Online Help . 1-18
Blocks with Restrictions . 1-19
S-Function Builder Blocks . 1-21
Setting Simulation Configuration Parameters 1-21
Building Your Model . 1-22

Using the c2000lib Blockset . 1-24
Hardware Setup . 1-24
Starting the c2000lib Library . 1-24
Setting Up the Model . 1-26
Adding Blocks to the Model . 1-32

v

Generating Code from the Model . 1-35
Creating Code Composer Studio Projects Without

Loading . 1-36

Configuring Timing Parameters for CAN Blocks

2
Blocks Where the Bit Rate Cannot Be Set Directly 2-2

Setting Timing Parameters . 2-3
Equations for Bit Rate Calculation 2-6
CAN Bit Timing Examples . 2-7

Configuring Acquisition Window Width for ADC
Blocks

3
What Is an Acquisition Window? . 3-2

Configuring ADC Parameters for Acquisition Window
Width . 3-5
Examples . 3-7

Creating Stand-Alone Applications by Saving
Code into Flash Memory

4
The Need for Stand-Alone Applications 4-2

Generating Code for Flash Memory 4-3

Running Code from Flash Memory 4-5

vi Contents

Using the IQmath Library

5
About the IQmath Library . 5-2

Common Characteristics . 5-2

Fixed-Point Numbers . 5-4
Signed Fixed-Point Numbers . 5-4
Q Format Notation . 5-5

Building Models . 5-9
Converting Data Types . 5-9
Using Sources and Sinks . 5-9
Choosing Blocks to Optimize Code . 5-9

Blocks — By Category

6
C2000 Target Preferences (c2000tgtpreflib) 6-2

Host-Side CAN Blocks (c2000canlib) 6-3

Host-Side SCI Blocks (c2000scilib) 6-4

C2000 RTDX Instrumentation (rtdxBlocks) 6-5

C2400 DSP Chip Support (c2400dspchiplib) 6-6

C280x DSP Chip Support (c280xdspchiplib) 6-7

C281x DSP Chip Support (c281xdspchiplib) 6-8

C28x Digital Motor Control (c28xdmclib) 6-10

C28x IQmath (tiiqmathlib) . 6-11

vii

Blocks — Alphabetical List

7

Index

viii Contents

1

Getting Started

This chapter describes how to use the Embedded Target for TI C2000™ DSP
to create and execute applications on Texas Instruments C2000 development
boards. To use the targeting software, you should be familiar with using
Simulink® to create models and with the basic concepts of Real-Time
Workshop® automatic code generation. To read more about Real-Time
Workshop, refer to the “Real-Time Workshop” documentation.

What Is the Embedded Target for
the TI TMS320C2000 DSP Platform?
(p. 1-2)

Introduces the Embedded Target for
TI C2000 DSP and describes some of
its features and supported hardware

Setting Up and Configuring (p. 1-3) Describes the software and hardware
required to use the Embedded Target
for the TI TMS320C2000™ DSP
Platform and how to set them up

Embedded Target for TI C2000 and
Code Composer Studio (p. 1-9)

Provides information about Code
Composer Studio™

Data Type Support (p. 1-10) Compares the data types supported
by Simulink and the TI C2000 DSP
chips

Scheduling and Timing (p. 1-11) Provides information about TI C2000
scheduling

Overview of Creating Models for
Targeting (p. 1-18)

Summarizes the steps required to
create models for your target

Using the c2000lib Blockset (p. 1-24) Provides an example of creating a
model and targeting hardware

1 Getting Started

What Is the Embedded Target for the TI TMS320C2000
DSP Platform?

The Embedded Target for the TI TMS320C2000 DSP Platform integrates
Simulink and MATLAB with Texas Instruments eXpressDSP™ tools. You can
use this product to develop and validate digital signal processing and control
designs from concept through code.

The Embedded Target for the TI TMS320C2000 DSP Platform uses C code
generated by Real-Time Workshop® and your TI development tools to generate
a C language real-time implementation of your Simulink model. Real-Time
Workshop builds a Code Composer Studio™ project from the C code.

You can compile, link, download, and execute the generated code on an
LF2407, F2808, or F2812 eZdsp™ DSP board from Spectrum Digital, Inc. or
on a custom board based on a TI C280x or C281x chip.

Suitable Applications
The Embedded Target for the TI TMS320C2000 DSP Platform enables you to
develop digital signal processing and control applications. Some important
characteristics of the applications that you can develop are

• Asynchronous scheduling

• Flash-based standalone applications

• Fixed-point arithmetic

• Single rate

• Multirate

• Adaptive

• Frame based

1-2

Setting Up and Configuring

Setting Up and Configuring

Platform Requirements — Hardware and Operating
System
To run the Embedded Target for the TI TMS320C2000 DSP Platform, your
host PC must meet the following hardware configuration requirements:

• Intel Pentium or Intel Pentium processor-compatible PC

• 64 MB RAM (128 MB recommended)

• 20 MB hard disk space available after installing MATLAB

• Color monitor

• One parallel printer port or one USB port to connect your target board
to your PC

• CD-ROM drive

• Windows 2000 or Windows XP

You may need additional hardware, such as signal sources and generators,
oscilloscopes or signal display systems, and assorted cables to test and
evaluate your application on your hardware.

Supported Hardware for Targets
The Embedded Target for TI C2000 DSP supports the following boards:

• DSP Starter Kits (DSKs) from Spectrum Digital, Inc.

- TMS320F2812 eZdsp DSK — The F2812eZdsp DSP Starter Kit

- TMS320F2808 eZdsp DSK — The F2808eZdsp DSP Starter Kit

- TMS320LF2407 eZdsp DSK — The LF2407eZdsp DSP Starter Kit

The above DSKs help developers evaluate digital signal processing
applications for the Texas Instruments DSP chips. You can create, test, and
deploy your processing software and algorithms on the target processor
without the difficulties inherent in starting with the digital signal processor
itself and building the support hardware to test the application on the

1-3

1 Getting Started

processor. Instead, the development board provides the input hardware,
output hardware, timing circuitry, memory, and power for the digital signal
processor. Texas Instruments provides the software tools, such as the C
compiler, linker, assembler, and integrated development environment, for
PC users to develop, download, and test their algorithms and applications
on the processor.

Refer to the documentation provided with your hardware for information
on setting up and testing your target board.

Note To generate code, and download the code to your target board, you
do not need to change any jumpers from their factory defaults on either
the LF2407 or F2812 target board.

However, if you want to run your code from flash memory on the F2808 or
F2812, you do need to change settings on the board. For more information
on this, see “Creating Stand-Alone Applications by Saving Code into Flash
Memory”.

Note In factory default condition, both the LF2407 and F2812 target
boards are set to operate in microcontroller mode. The Embedded Target for
the TI TMS320C2000 DSP Platform does not support microprocessor mode.

• Custom boards based on any of the following Texas Instruments C2000
Digital Signal Controllers:

- TMS320F2801

- TMS320F2802

- TMS320F2806

- TMS320F2808

- TMS320F2809

- TMS320C2810

- TMS320F2810

1-4

Setting Up and Configuring

- TMS320C2811

- TMS320F2811

- TMS320R2811

- TMS320C2812

- TMS320F2812

- TMS320R2812

Running Code from Flash Memory
Running code from flash memory is supported on both the F2808 and F2812
eZdsp DSKs. Although you can generate and download code to the F2808 or
F2812 eZdsp DSK with the board in factory default condition, you need to
change hardware settings on the board before you can run code from flash
memory. For more information see “Creating Stand-Alone Applications by
Saving Code into Flash Memory”

Software Requirements

MathWorks Software
For information about other MathWorks software required to use the
Embedded Target for the TI TMS320C2000 DSP Platform, refer to the
MathWorks Web site — http://www.mathworks.com. Check the Products
area for the Embedded Target for the TI TMS320C2000 DSP Platform.

For information about the software required to use the Link for Code
Composer Studio Development Tools, refer to the Products area of the
MathWorks Web site — http://www.mathworks.com.

Texas Instruments Software
In addition to the required software from The MathWorks, Embedded Target
for the TI TMS320C2000 DSP Platform requires that you install the Texas
Instruments development tools and software listed in the following table.
Installing Code Composer Studio IDE Version 3.1 for the C2000 series installs
the software shown.

1-5

http://www.mathworks.com
http://www.mathworks.com

1 Getting Started

Required TI Software for Targeting Your TI C2000 Hardware

Installed
Product Additional Information

Assembler Creates object code (.obj) for C2000 boards from
assembly code.

Compiler Compiles C code from the blocks in Simulink models
into object code (.obj). As a by-product of the
compilation process, you get assembly code (.asm) as
well.

Linker Combines various input files, such as object files and
libraries.

Code Composer
Studio

Texas Instruments integrated development
environment (IDE) that provides code debugging and
development tools.

TI C2000
miscellaneous
utilities

Various tools for developing applications for the C2000
digital signal processor family.

Code Composer
Setup Utility

Program you use to configure your CCS installation by
selecting your target boards or simulator.

Flash Plug-In Plug-in you use in downloading generated code to flash
memory. While this plug-in is not strictly required, it
is very useful when working with flash memory. It is
available through the CCS Web Update.

Verifying the Configuration
To determine whether the Embedded Target for the TI TMS320C2000 DSP
Platform is installed on your system, enter this command at the MATLAB
prompt:

c2000lib

MATLAB displays the C2000 block library containing the following libraries
and blocks that comprise the C2000 library:

1-6

Setting Up and Configuring

• C2800 RTDX Instrumentation

• C2000 Target Preferences

• Host-side CAN Blocks

• C281x DSP Chip Support

• C280x DSP Chip Support

• C2400 DSP Chip Support

• C28x IQMath Library

• C28x DMC Library

• Info block

• Demos block

If you do not see the listed libraries, or MATLAB does not recognize the
command, you need to install the Embedded Target for the TI TMS320C2000
DSP Platform. Without the software, you cannot use Simulink and Real-Time
Workshop to develop applications targeted to the TI boards.

Note For information about system requirements, refer to the system
requirements page, available in the Products area at the MathWorks Web
site (http://www.mathworks.com).

To verify that Code Composer Studio (CCS) is installed on your machine,
enter this command at the MATLAB prompt:

ccsboardinfo

With CCS installed and configured, MATLAB returns information about
the boards that CCS recognizes on your machine, in a form similar to the
following listing:

Board Board Proc Processor Processor
Num Name Num Name Type
--- ---------------------------------- ---
1 F2812 Simulator 0 CPU TMS320C28xx
0 F2812 PP Emulator 0 CPU_1 TMS320C28xx

1-7

http://www.mathworks.com

1 Getting Started

If MATLAB does not return information about any boards, revisit your CCS
installation and setup in your CCS documentation.

As a final test, launch CCS to ensure that it starts up successfully. For the
Embedded Target for the TI TMS320C2000 DSP Platform to operate with
CCS, the CCS IDE must be able to run on its own.

Note For any model to work in the targeting environment, you must select
the discrete-time solver in the Solver pane of the Simulink Configuration
Parameters dialog box. Targeting does not work with continuous-time solvers.

To select the discrete-time solver, from the main menu in your model window,
select Simulation > Configuration Parameters. Then in the Solver pane,
set the Solver option to discrete (no continuous states).

1-8

Embedded Target for TI C2000 and Code Composer Studio

Embedded Target for TI C2000 and Code Composer Studio
Texas Instruments (TI) facilitates development of software for TI DSPs by
offering Code Composer Studio (CCS) Integrated Development Environment
(IDE). Used in combination with your Embedded Target for TI C2000 DSP
and Real-Time Workshop, CCS provides an integrated environment that, once
installed, requires no coding.

Executing code generated from Real-Time Workshop on a particular target
requires that Real-Time Workshop generate target code that is tailored to the
specific hardware target. Target-specific code includes I/O device drivers and
interrupt service routines (ISRs). Generated source code must be compiled
and linked using CCS so that it can be loaded and executed on a TI DSP. To
help you to build an executable, the Embedded Target for TI C2000 DSP
uses the Link for Code Composer Studio to start the code building process
within CCS. After you download your executable to your target and run it,
the code runs wholly on the target. You can access the running process only
from the CCS debugging tools or across a link using Link for Code Composer
Studio Development Tools.

Default Project Configuration
CCS offers two standard project configurations, Release and Debug. Project
configurations define sets of project build options. When you specify the build
options at the project level, the options apply to all files in your project. For
more information about the build options, refer to your TI documentation. The
models you build with the Embedded Target for TI C2000 DSP use a custom
configuration that provides a third combination of build and optimization
settings — custom_MW.

Default Build Options in the custom_MW Configuration
The default settings for custom_MW are the same as the Release project
configuration in CCS, except for the compiler options. custom_MW uses
Function(-o2) for the compiler optimization level.

Your CCS documentation provides complete details on the compiler build
options. You can change the individual settings or the build configuration
within CCS.

1-9

1 Getting Started

Data Type Support
The TI C2000 DSP chips support 16-bit data types and do not have native
8-bit data types. Simulink and the Embedded Target for TI C2000 support
many data types, including 8-bit data types.

If you select int8 or uint8 in your model, your simulation will run with 8-bit
data, but in the generated code, that data will be represented as 16-bit. This
may cause instances where data overflow and wraparound occurs in the
simulation, but not in the generated code.

For example, if you want the overflow behavior of the simulation and
generated code to match for a Simulink Add block in your model, select
Saturate on integer overflow in that block.

1-10

Scheduling and Timing

Scheduling and Timing
Normally the code generated by the Embedded Target for TI C2000 runs out
of the context of a timer interrupt. Model blocks run in a periodical fashion
clocked by the periodical interrupt whose period is tied to the base sample
time of the model.

This execution scheduling model, however, is not flexible enough for many
systems, especially control and communication systems, which must respond
to external events in real time. Such systems require the ability to handle
various hardware interrupts in an asynchronous fashion.

For C280x and C281x-based boards, Embedded Target for TI C2000 lets you
model systems that include asynchronous hardware interrupt processing in
addition to the tasks that are left to be handled in the context of the timer
interrupt.

Timer-Based Interrupt Processing
For code that runs in the context of the timer interrupt, each iteration of the
model solver is run after an interrupt has been posted and serviced by an
interrupt service routine (ISR). The code generated for the C280x or C281x
uses CPU_timer0. The code generated for the C24x uses an Event Manager
(EV) timer, which you can select.

The timer is configured so that the model’s base rate sample time corresponds
to the interrupt rate. The timer period and prescaler are calculated and set
up to ensure the desired rate as follows:

BaseRateSampleTime
TimerPeriod

TimerClockSpeed
TimerClock e

=

Pr sscaler

The minimum achievable base rate sample time depends on the model
complexity. The maximum value depends on the maximum timer period value
(232-1 for the F2812 and F2808 or 216-1 for the LF2407), the CPU clock speed
and, for the LF2407, the TimerClockPrescaler setting in the appropriate
Target Preferences block. The CPU clock speed for the LF2407 is 40 MHz, for
the F2808 it is 100 MHz, and for the F2812 it is 150 MHz.

1-11

1 Getting Started

Maximum Sample Times

TimerClockPrescaler
Setting

C24x
Maximum
Sample
Time(s)

C280x
Maximum
Sample
Time(s)

C281x
Maximum
Sample
Time(s)

1 0.0016 42.94 28.63

2 0.0032 N/A N/A

4 0.0065 N/A N/A

8 0.0131 N/A N/A

16 0.0262 N/A N/A

32 0.0524 N/A N/A

64 0.1048 N/A N/A

128 0.2097 N/A N/A

If all the blocks in the model inherit their sample time value, and no sample
time is explicitly defined, Simulink assigns a default of 0.2 s.

High-Speed Peripheral Clock
The Event Managers and their general-purpose timers, which drive PWM
waveform generation use the high-speed peripheral clock (HISCLK). By
default, this clock is always selected in the Embedded Target for TI C2000.
This clock is derived from the system clock (SYSCLKOUT):

HISCLK = SYSCLKOUT / (high-speed peripheral prescaler)

The high-speed peripheral prescaler is determined by the HSPCLK bits set in
SysCtrl. The default value of HSPCLK is 1, which corresponds to a high-speed
peripheral prescaler value of 2.

For example, on the F2812, the HISCLK rate becomes

HISCLK = 150 MHz / 2 = 75 MHz

1-12

Scheduling and Timing

Asynchronous Interrupt Processing
Simulink and Real-Time Workshop facilitate the modeling and generation
of code for asynchronous event handling, including servicing of
hardware-generated interrupts, by using the following special blocks:

• Hardware Interrupt block

This block enables selected hardware interrupts, generates the
corresponding interrupt service routines (ISRs), and connects them to the
corresponding interrupt service vector table entries. When you connect
the output of the Hardware Interrupt block to the control input of a
triggered subsystem (for example, a function-call subsystem), the generated
subsystem code is called from the ISRs.

Embedded Target for TI C2000 provides a Hardware Interrupt block for
each of the supported processor families: C280x Hardware Interrupt and
C281x Hardware Interrupt.

• Rate Transition blocks

These blocks support data transfers between blocks running with different
priorities. The built-in Simulink Rate Transition blocks can be used for
this purpose.

The following diagram illustrates a use case where a Hardware Interrupt
block triggers two tasks, connected to other blocks that run periodically in the
context of the synchronous scheduler.

1-13

1 Getting Started

In the preceding figure, the Hardware Interrupt block is set to react on two
interrupts. Since only one Hardware Interrupt block is allowed in a model
and the output of this block is a vector of length two, you must connect the
Hardware Interrupt block to a Demux block to trigger the two function-called
subsystems. The function-called subsystems contain the blocks that are
executed asynchronously in the context of the hardware interrupt.

The following example shows how to build and configure a model to react on
an eCAN message using a hardware interrupt and an asynchronous scheduler:

1 Place the eCAN Receive block in a function-called subsystem, as shown in
the following figure.

1-14

Scheduling and Timing

2 On the eCAN Receive block dialog, check the box labeled Post interrupt
when message is received, as shown in the following figure.

3 Set the Sample Time of the eCAN Receive block to -1 since the block will
be triggered by the ISR, as shown in the preceding figure.

4 Add the C281x Hardware Interrupt block to your model, as shown in the
following figure.

1-15

1 Getting Started

5 The eCAN interrupt on C281x chips is on CPU line 9 and PIE line 5
for module 0. These parameters can be found in the C281x Hardware
Interrupt block, C281x Peripheral Interrupt Vector Values figure. Set the
hardware interrupt parameters CPU interrupt number(s): to 9, and PIE
interrupt number(s): to 5 as shown in the following figure.

6 Connect the output of the Hardware Interrupt block to the function-call
subsystem containing the eCAN block.

1-16

Scheduling and Timing

At execution time, when a new eCAN message is received, the eCAN interrupt
is triggered, and the code you placed in the function-called subsystem
is executed. In this example, the eCAN Receive block is placed in the
function-called subsystem, which means that the message is read and is
passed to the rest of the code.

For more information, see the section on Asynchronous Support in the
Real-Time Workshop documentation.

1-17

1 Getting Started

Overview of Creating Models for Targeting
After you have installed the supported development board, start MATLAB. At
the MATLAB command prompt, type

c2000lib

This opens the c2000lib Simulink blockset that includes libraries containing
blocks predefined for C2000 input and output devices. As needed, add the
blocks to your model. See “Using the c2000lib Blockset” on page 1-24 for an
example of how to use this library.

Create your real-time model for your application the same way you create any
other Simulink model — by using standard blocks and C-MEX S-functions.
Select blocks to build your model from the following sources:

• Appropriate Target Preferences library block, to set preferences for your
target and application

• From the appropriate libraries in the c2000lib block library, to handle
input and output functions for your target hardware

• From Real-Time Workshop

• From Simulink Fixed Point

• Discrete time blocks from Simulink

• From any other blockset that meets your needs and operates in the discrete
time domain

Online Help
To get general help for using the Embedded Target for the TI TMS320C2000
DSP Platform, use the help feature in MATLAB. At the command prompt, type

help tic2000

to list the functions and block libraries included in the Embedded Target for
the TI TMS320C2000 DSP Platform. Or select Help > Full Product Family
Help from the menu bar in the MATLAB desktop. When you see the Contents
in Help, select Embedded Target for the TI C2000 DSP.

1-18

Overview of Creating Models for Targeting

Blocks with Restrictions
There are many blocks in different blocksets that communicate with your
MATLAB workspace. Some blocks may not work on the target as they do on
your desktop, and for that reason, you should avoid them altogether. Other
blocks may have restrictions in their settings, which, when followed, ensure
smooth communications. All the blocks that require this special consideration
are listed in the following sections.

Blocks to Avoid Using in Your Models
The blocks listed in the table below generate code, but they do not work on
the target as they do on your desktop—in general, they slow your signal
processing application without adding instrumentation value. For this reason,
The MathWorks recommends that you avoid using certain blocks, such as the
Scope block and some source and sink blocks, in SIMULINK models that you
use on Embedded Target for TI C2000 DSP targets.

Library Category Block Name

Scope

To File

Sinks

To Workspace

From File

Simulink

Sources

From Workspace

1-19

1 Getting Started

Library Category Block Name

From Wave Device

From Wave File

To Wave Device

Platform-Specific I/O

To Wave File

Signal Operations Triggered Signal From
Workspace

Signal To Workspace

Spectrum Scope

Signal Processing Sinks

Triggered to Workspace

Signal Processing
Blockset

Signal Processing
Sources

Signal From Workspace

Blocks That Require Specific Settings
Any block listed in the following table can be used with all your models.
However, such a block requires specific settings, as indicated under
“Restriction”.

Library Category Block
Name

Restriction

Signal
Processing
Blockset

Signal
Processing
Sources

Random
Source
Block

For this block, the only Output
data type supported by the TIC2000
Embedded Targets is Single. Be sure
to set this parameter correctly in the
Block Parameters dialog box. See
the following figure.

1-20

Overview of Creating Models for Targeting

S-Function Builder Blocks
Simulink S-Function Builder can be used to create and add new blocks to your
model. When you generate code for your model, related source code files are
added to your Code Composer Studio project.

Setting Simulation Configuration Parameters
When you drag a Target Preferences block into your model, you are given
the option to set basic simulation parameters automatically. (Note that this
option does not appear if the Configuration Parameters dialog box is open
when you drag the Target Preferences block into the model.)

To refine the automatic settings, or set the simulation parameters manually,
open your model and select Simulation > Configuration Parameters.

If you are setting your simulation parameters manually, you must make at
least the following two settings:

• You must specify discrete time by selecting Fixed-step and discrete (no
continuous states) in the Solver pane of the Configuration Parameters
dialog box.

• You must also specify the appropriate version of the system target file and
template makefile in the Real-Time Workshop pane. For the Embedded
Target for the TI TMS320C2000 DSP Platform, specify one of the following
system target files, or click Browse and select from the list of targets.

ti_C2000_grt.tlc
ti_C2000_ert.tlc

1-21

1 Getting Started

The associated template filename is automatically filled in.

System Target Types and Memory Management
There are two system target types that apply to the Embedded Target for the
TI TMS320C2000 DSP Platform. These correspond to the two system target
files mentioned above.

A Generic Real-Time (GRT) target (such as ti_C2000_grt.tlc) is the target
configuration that generates model code for a real-time system as if the
resulting code was going to be executed on your workstation.

An Embedded Real-Time (ERT) target (such as ti_C2000_ert.tlc) is
the target configuration that generates model code for execution on an
independent embedded real-time system. This option requires Real-Time
Workshop Embedded Coder.

The ERT target for the Embedded Target for the TI TMS320C2000 DSP
Platform offers memory management features that give you a way manage
the performance of your code while working with limited memory resources.
For more information on this, see the chapter on Memory Sections in the
Real-Time Workshop Embedded Coder User’s Guide.

Building Your Model
With this configuration, you can generate a real-time executable and
download it to your TI development board by clicking Build on the Real-Time
Workshop pane. Real-Time Workshop automatically generates C code and
inserts the I/O device drivers as specified by the hardware blocks in your
block diagram, if any. These device drivers are inserted in the generated C
code as inlined S-functions. For information about inlining S-functions, refer
to your target language compiler documentation. For a complete discussion of
S-functions, refer to your documentation about writing S-functions.

Note To build, load, and run code successfully on your target board, MATLAB
must be able to locate that board in your system configuration. Make
sure that the Board Name in your Code Composer Studio setup and the
DSPBoardLabel in the Target Preferences block in your model match.

1-22

Overview of Creating Models for Targeting

During the same build operation, block parameter dialog box entries are
combined into a project file for CCS for your TI C2000 board. If you selected
the Build and execute build action in the Target Preferences block, your
makefile invokes the TI cross-compiler to build an executable file that
is automatically downloaded via the parallel port to your target. After
downloading the executable file to the target, the build process runs the file
on the board’s DSP.

Note After using the run-time Build option to generate and build code for
your application, you must perform the following reset sequence before you
can run that code on your board. If you want to rerun your application
manually once it has been generated, you must also use this procedure.

F2812 eZdsp and F2808 eZdsp Reset Sequence

1 Reset the board CPU.

2 Load your code onto the target.

3 Run your code on the target.

LF2407 eZdsp Reset Sequence

1 Load your code onto the target.

2 Reset the board CPU.

3 Run your code on the target.

1-23

1 Getting Started

Using the c2000lib Blockset
This section uses an example to demonstrate how to create a Simulink model
that uses the Embedded Target for TI C2000 DSP blocks to target your board.
The example creates a model that performs PWM duty cycle control via pulse
width change. It uses the C2812 ADC block to sample an analog voltage and
the C2812 PWM block to generate a pulse waveform. The analog voltage
controls the duty cycle of the PWM and you can observe the duty cycle change
on the oscilloscope. This model is also provided in the Demos library. Note
that the model in the Demos library also includes a model simulation.

Hardware Setup
The following hardware is needed for this example:

• Spectrum Digital eZdsp F2812

• Function generator

• Oscilloscope and probes

To connect the hardware:

1 Connect the function generator output to the ADC input ADCINA0 on
the eZdsp F2812.

2 Connect the output of PWM1 on the eZdsp F2812 to the analog input of
the oscilloscope.

3 Connect VREFLO to AGND on the eZdsp F2812. See the section
on the Analog Interface in Chapter 2 of the eZdsp™ F2812
Technical Reference, available from the Spectrum Digital Web site at
http://c2000.spectrumdigital.com/ezf2812/

Starting the c2000lib Library
At the MATLAB prompt, type

c2000lib

to open the c2000lib library blockset, which contains libraries of blocks
designed for targeting your board.

1-24

http://c2000.spectrumdigital.com/ezf2812/

Using the c2000lib Blockset

The libraries are in three groups, plus Info and Demos blocks.

General

• C2800 RTDX Instrumentation (rtdxBlocks) — Blocks for adding RTDX
communications channels to Simulink models. See the tutorial in the
Link for Code Composer Studio Development Tools documentation for an
example of using these blocks.

1-25

1 Getting Started

• C2000 Target Preferences (c2000tgtpreflib) — Blocks to specify target
preferences and options. You do not connect this block to any other block in
your model.

• Host-side CAN Blocks (c2000canlib) — Blocks to configure CAN message
blocks and Vector CAN driver blocks

Chip Support

• C281x DSP Chip Support (c281xdspchiplib) — Blocks to configure the
codec on the F2812 eZdsp DSK or on C281x-based custom boards

• C280x DSP Chip Support (c280xdspchiplib) — Blocks to configure the
codec on the F2808 eZdsp DSK or on C280x-based custom boards

• C2400 DSP Chip Support (c2400dspchiplib) — Blocks to configure the
codec on the LF2407 eZdsp DSK or on the LF2407 DSP

Optimized Libraries

• C28x IQmath Library (tiiqmathlib) — Fixed-point math blocks for use
with C28x targets

• C28x DMC Library (c28xdmclib) — Fixed-point math blocks for digital
motor control with C28x DSPs

Other Blocks

• Info block — Online help

• Demos block — Demos window
For more information on the blocks in each library, refer to their reference
pages.

Setting Up the Model
Preliminary tasks for setting up a new model include adding a Target
Preferences block, setting or verifying Target Preferences, and setting the
simulation parameters.

1-26

Using the c2000lib Blockset

1 In the Library: c2000lib window, select File > New > Model to create a
new Simulink model.

2 In the Library: c2000lib window, double-click the C2000 Target Preferences
library block.

3 From the Target Preferences Library window, drag the F2812 eZdsp block
into your new model.

The following query asks if you want preferences to be set automatically.

4 Click Yes to allow automatic setup. The following settings are
made, referenced in the table below by their locations in the
Simulation > Configuration Parameters dialog box:

Pane Field Setting

Solver Stop time inf

Solver Type Fixed-step

Data
Import/Export

Save to workspace - Time Off (cleared)

Data
Import/Export

Save to workspace -
Output

Off (cleared)

Hardware
Implementation

Device type TI C2000

1-27

1 Getting Started

Pane Field Setting

Real-Time
Workshop

Target configuration -
System target file

ti_c2000_grt.tlc

Real-Time
Workshop

Target configuration -
Template makefile

ti_c2000_grt.tmf

Note Generated code does not honor Simulink stop time from the
simulation. Stop time is interpreted as inf. To implement a stop in
generated code, you must put a Stop Simulation block in your model.

Note One Target Preferences block must be in each target model at the
top level. It does not connect to any other blocks, but stands alone to set
the target preferences for the model.

5 From your model’s main menu, select Simulation > Configuration
Parameters to verify and set the simulation parameters for this model.
Parameters you set in this dialog box belong to the model you are building.
They are saved with the model and stored in the model file. Refer to your
Simulink documentation for information on the Configuration Parameters
dialog box.

6 Use the Real-Time Workshop pane to set options for the real-time
model. Refer to your “Real-Time Workshop” documentation for detailed
information on the Real-Time Workshop pane options.

1-28

Using the c2000lib Blockset

• System target file. Clicking Browse opens the System target file
browser where you select ti_c2000_grt.tlc or ti_c2000_ert.tlc.
When you select your target configuration, Real-Time Workshop
chooses the appropriate system target file, template makefile, and make
command. You can also enter the target configuration filename, and
Real-Time Workshop will fill in the Template makefile and Make
command selections.

• Make command. When you generate code from your digital signal
processing application, use the standard command make_rtw. Enter
make_rtw for the Make command.

• Template makefile. When you select the System target file,
Real-Time Workshop automatically selects the appropriate template
makefile: ti_c2000_grt.tmf or ti_c2000_ert.tmf.

1-29

1 Getting Started

• Generate code only. This option does not apply to targeting with
the Embedded Target for TI C2000 DSP. To generate source code
without building and executing the code on your target, open the Target
Preferences block in your model and select Generate code only as the
BuildAction (BuildOptions > RunTimeOptions > BuildAction).

For all other Real-Time Workshop options, leave the default values for
this example.

7 Set the Target Preferences by double-clicking the F2812 eZdsp block and
adjust these parameters. For descriptions of these fields, see the F2812
eZdsp reference page.

Build Options

Subfield Field Setting

CompilerVerbosity Verbose

KeepASMFiles False

OptimizationLevel Function(-o2)

Compiler Options

SymbolicDebugging Yes

CreateMAPFile True

KeepOBJFiles True

Linker Options

LinkerCMDFile Full_memory_map

BuildAction Build_and_executeRunTime Options

OverrunAction Continue

1-30

Using the c2000lib Blockset

CCSLink Options

Field Setting

CCSHandleName CCS_Obj

ExportCCSHandle True

CodeGeneration Options

Subfield Field Setting

Algorithm Preemptive_priority_basedScheduler

Timer CPU_timer0

DSPBoard Options

Subfield Field Setting

DSP Board Label DSPBoardLabel F2812 PP Emulator
(see Note below)

DSP Chip DSPChipLabel TI TMS320C2812

BaudRatePrescaler 10

EnhancedCANMode True

SAM Sample_one_time

SBJ Only_falling_edges

SJW 2

SelfTestMode False

TSEG1 8

eCAN

TSEG2 6

1-31

1 Getting Started

Note If the board label in your Code Composer Studio setup differs from
the default DSP Board Label shown in the Target Preferences block, you
can change the default setting. This would ensure that whenever you drag
a Target Preferences block into a new model, the DSP Board Label of your
model will match the label in your Code Composer Studio setup.

Open the C2000 Target Preferences library. Double-click the appropriate
Target Preferences block. Click DSP Board and change the text in the
DSP Board Label right column to the desired string. Click OK to close the
Target Preferences block and then close the library to save your change.

Adding Blocks to the Model

1 Double-click the C281x DSP Chip Support Library to open it.

1-32

Using the c2000lib Blockset

2 Drag the C281x ADC block into your model. Double-click the ADC block
in the model and set Sample time to 64/80000. Use the default values
for all other fields. Refer to the C281x ADC reference page for information
on these fields.

3 Drag the C281x PWM block into your model. Double-click the PWM block
in the model and set the following parameters. Refer to the C281x PWM
reference page for information on these fields.

1-33

1 Getting Started

Pane Field Parameter

Module A

Waveform
period source

Specify via dialog

Waveform
period units

Clock cycles

Waveform
period

64000

Timer

Waveform type Asymmetric

Enable
PWM1/PWM2

SelectedOutputs

Duty cycle
source

Input port

PWM1 control
logic

Active highLogic

PWM2 control
logic

Active low

Use
deadband for
PWM1/PWM2

Selected

Deadband
prescaler

16

Deadband

Deadband
period

12

ADC Control ADC start event Period interrupt

4 Type Simulink at the MATLAB command line to open the Simulink
Library browser. Drag a Gain block from the Math Operations library into
your model. Double-click the Gain block in the model and set the following
parameters in the Function Block Parameters dialog box. Click OK.

1-34

Using the c2000lib Blockset

Pane Field Parameter

Gain 30

Multiplication Element-wise(K.*u)

Main

Sample time -1

Output data type
mode

Specify via dialog

Output data type uint(16)

Signal Data Types

Round integer
calculations toward

Floor

Parameter Data
Types

Parameter data type
mode

Same as input

5 Connect the ADC block to the Gain block and the Gain block to the PWM
block as shown:

Generating Code from the Model
This section summarizes how to generate code from your real-time model. For
details about generating code from models in Real-Time Workshop, refer to
the “Real-Time Workshop” documentation.

You start the automatic code generation process from the Simulink model
window by clicking Build in the Real-Time Workshop pane of the
Configuration Parameters dialog. Other ways of starting the code generation
process are by clicking the Build all button on the toolbar of your model, or by
pressing the keyboard shortcut, Ctrl+B, while your model is open and in focus.

The code building process consists of these steps:

1 Real-Time Workshop invokes the function make_rtw to start the Real-Time
Workshop build procedure for a block diagram. make_rtw invokes the

1-35

1 Getting Started

Target Language Compiler to generate the code and then invokes the
language-specific make procedure.

2 gmake builds the file modelname.out. Depending on the build options you
select in the Simulation Parameters dialog box, gmake can initiate the
sequence that downloads and executes the model on your TI target board.

Creating Code Composer Studio Projects Without
Loading
To create projects in CCS without loading files to your target:

1 In the Real-Time Workshop pane in the Simulation Parameters dialog
box, select ti_c2000.tlc as the system target file.

2 Select Create_CCS_Project for the BuildAction in the Target Preferences
block. Note that the Build and Build_and_execute options create CCS
projects as well.

3 Set the other Target Preferences options, including those for CCSLink. On
the Real-Time Workshop pane of the Simulation Parameters dialog box,
click Build to build your new CCS project.

Real-Time Workshop and the Embedded Target for TI C2000 DSP generate
all the files for your project in CCS and create a new project in the IDE.
Your new project is named for the model you built.

In CCS you see your project with the files in place in the directory tree.

1-36

2

Configuring Timing
Parameters for CAN Blocks

Blocks Where the Bit Rate Cannot
Be Set Directly (p. 2-2)

Lists the specific blocks whose
timing parameters are set with the
described process

Setting Timing Parameters (p. 2-3) Describes how to set block timing
parameters to obtain the required
bit rate

2 Configuring Timing Parameters for CAN Blocks

Blocks Where the Bit Rate Cannot Be Set Directly
There are six specific blocks in the C2000 control where the bit rate cannot be
set directly and require the setting of timing parameters. These blocks are:

C281x eCAN Receive
C281x eCAN Transmit
C280x eCAN Receive
C280x eCAN Transmit
C24x CAN Receive
C24x CAN Transmit

2-2

Setting Timing Parameters

Setting Timing Parameters
In “Blocks Where the Bit Rate Cannot Be Set Directly” you must use the
following parameters: TSEG1, TSEG2, and BaudRatePrescaler (BRP) to
set the required bit rate. These parameters are configured from theTarget
Preference Setup dialog box used for your specific model. For example, for
the C281x blocks, this dialog box is shown in the following figure:

2-3

2 Configuring Timing Parameters for CAN Blocks

��������	
�����
����	�

���������������

For the C280x blocks, there are two separate eCAN modules that can be set
independently, as shown by the Target Preferences Setup dialog box:

2-4

Setting Timing Parameters

��������
	
�����

���	�

�����

�����

2-5

2 Configuring Timing Parameters for CAN Blocks

The following sections describe the series of steps and rules that govern the
process of setting these timing parameters.

Equations for Bit Rate Calculation
The following steps guide you through the process of configuring the required
timing parameters.

1 Review the known entities:

Bit Rate

This is the rate you want to set for your CAN.

SYSCLKOUT

This is the CAN module system clock frequency.

2 Estimate the value of the BaudRatePrescaler (BRP) and substitute this
value, along with the known values of Bitrate and SYSCLKOUT, into the
equation below as follows:

Bitrate SYSCLKOUT BRP BitTime= /(*)

Solve this equation for BitTime to obtain a value:

BitTime SYSCLKOUT BRP Bitrate= /(*)

3 Estimate values of TSEG1 and TSEG2 that satisfy the following equation:

BitTime TSEG TSEG= + +1 2 1
Remember that BitTime is now a known quantity, calculated in the
previous step.

4 Validate these estimated values of BRP, TSEG1, and TSEG2 against the
following rules:

TSEG1 >= TSEG2
IPT (Information Processing Time) = 3/BRP
IPT <= TSEG1 <= 16 TQ
IPT <= TSEG2 <= 8 TQ

2-6

Setting Timing Parameters

1 TQ <= SJW <= min (4 TQ, TSEG2)
where IPT is Information Processing Time, TQ is Time Quanta, and SJW
is Synchronization Jump Width, also set in the Target Preference Setup
dialog box. .

5 Iterate steps two through four until the values selected for TSEG1, TSEG2,
and BRP meet all of the criteria.

Another way to look at the eCAN bit timing parameters is shown in the
following illustration.

CAN Bit Timing Examples
Assume that SYSCLKOUT = 150 MHz, and a bit rate of 1 Mbits/s is required.

1 Try to set the BRP to 10. Then substitute the values of bit rate, BRP, and
SYSCLKOUT into the following equation, solving for BitTime:

BitTime SYSCLKOUT BRP Bitrate
BitTime TQ

=
= =

/(*)
/(*)150 10 1 15

2-7

2 Configuring Timing Parameters for CAN Blocks

2 Try to set the values of TSEG1 and TSEG2 to 8TQ and 6TQ respectively.
Substitute the values of BitTime from the previous equation, and the
chosen values for TSEG1 and TSEG2 into the following equation:

BitTime TSEG TSEG
TQ TQ TQ

= + +
= + +

1 2 1
15 8 6 1

3 Finally, check the selected values against the rules:

IPT = 3/BRP = 3/10 = .3
IPT <= TSEG1 <= 16 TQ True! .3<=8TQ<=16TQ
IPT <= TSEG2 <= 8TQ True! .3 <= 6TQ <= 8TQ
1TQ <= SJW <= min(4TQ, TSEG2) which means that SJW can be set to
either 2, 3, or 4

4 Because all chosen values satisfy the criteria, no further iteration is
necessary.

The following table provides common timing parameter settings for three
typical values of Bit Rate and SYSCLKOUT = 40MHz. This clock frequency is
the maximum for the C24x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 Mbit/s 4 3 8 10 2

1 Mbit/s 5 4 10 4 2

2 Mbit/s 6 3 10 2 2

The following table provides common timing parameter settings for 3 typical
values of Bit Rate and SYSCLKOUT = 150MHz. This clock frequency is the
maximum for the C281x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 Mbit/s 8 6 15 20 2

1 Mbit/s 8 6 15 10 2

2 Mbit/s 8 6 15 5 2

2-8

Setting Timing Parameters

The following table provides common timing parameter settings for 3 typical
values of Bit Rate and SYSCLKOUT = 100MHz. This clock frequency is the
maximum for the C280x blocks.

Bit Rate TSEG1 TSEG2 Bit Time BRP SJW

.5 6 3 10 20 2

1 5 4 10 10 2

2 6 3 10 5 2

2-9

2 Configuring Timing Parameters for CAN Blocks

2-10

3

Configuring Acquisition
Window Width for ADC
Blocks

What Is an Acquisition Window?
(p. 3-2)

Explains the concept of the
acquisition window and how it
affects data validity

Configuring ADC Parameters for
Acquisition Window Width (p. 3-5)

Describes how to set ADC
parameters to obtain the proper
acquisition window width

3 Configuring Acquisition Window Width for ADC Blocks

What Is an Acquisition Window?
The purpose of ADC blocks is to take a signal from an analog source and
measure it with a digital device. The digital device does not measure in a
continuous process, but rather in a series of discrete measurements, close
enough together to approximate the source signal with the required accuracy,
as shown in the following figure:

����������� ������������
�����

The digital measurement itself is not an instantaneous process, but is rather
a measurement window, where the signal is acquired and then measured,
as shown below:

���
��
�����

�����
����� �����
�����
�����

In an ideal environment, as soon as the measurement window is opened, the
actual signal coming in would be measured perfectly. However, in actuality,
the signal does not reach its full magnitude immediately. In the real world

3-2

What Is an Acquisition Window?

environment, the measurement can be modeled by a circuit similar to the one
shown in the following figure for the ADC found on the F2812 eZdsp

where the measurement circuit is characterized by a certain capacitance. In
the preceding figure, when the switch is closed, the measurement begins.
However, because of the nature of the circuit, characterized by its capacitance,
the signal received is not in a form of a step function as shown by the ideal
measurement, but rather a ramp up to the true signal magnitude. The
following figure shows what happens to the signal when the sampler switch is
closed and the signal is received to be measured:

�����������
��!��������
�����
����"

Because the signal acquisition is not instantaneous, it is very important to
set a wide enough acquisition window to allow the signal to ramp up to full
strength before the measurement is taken. If the window is too narrow,
the measurement is taken before the signal has reached its full magnitude,
resulting in erroneous data. If the window is too wide, there is a chance of
the source signal itself changing, and the sampling being too infrequent to
reflect the actual value, resulting in erroneous data. Therefore, setting the

3-3

3 Configuring Acquisition Window Width for ADC Blocks

correct width of the acquisition window is crucial in obtaining correct data.
You are responsible for calculating the necessary width of the acquisition
window based on the circuit characteristics of resistance and capacitance
of your specific circuit. Then, using the ADC parameters described in the
following section, you can configure the necessary acquisition window width.

3-4

Configuring ADC Parameters for Acquisition Window Width

Configuring ADC Parameters for Acquisition Window
Width

The ADC parameters can be set from the Target Preferences Setup dialog
of the Custom C280x Board, or the Custom C281x Board, or the F2808 eZdsp.
These parameters are:

• ACQ_PS — Acquisition Prescaler — can be set to a value from 0 to 15,
however, the actual value is incremented by 1 to result in a range from
1 to 16.

• ADCLKPS — AD Clock Prescaler — can be set to a value from 0 to 15,
however, the actual value is incremented by 1 to result in a range from
1 to 16.

• CPS — Clock Prescaler — can be set to a value from 0 to 1, however, the
actual value is incremented by 1 to result in a range from 1 to 2.

3-5

3 Configuring Acquisition Window Width for ADC Blocks

�"���"
���#�
�����
���$$������
��!�������������� �����"%
�&'(�)���&*+	�)�����&	�

These three prescalers serve to reduce the speed of the clock and to set the
acquisition window width. The following diagram shows how these prescalers
are used:

3-6

Configuring ADC Parameters for Acquisition Window Width

��&*+	�
��,��-
�.�/������0
��1���
�

23�	&*+
�"��"��#���
#�
�#"�
�
���0� ��&*+	��,

��������"�
������������0
$
�!����4�/4��
$����
��$�������-

&	�

&	�

&	��,
$�
�"�
�
������
�"�����0
$
�!����4�/4��
$����
��$����
��

�&'(�

��&&*+�,
�"�������"�
��&����0
�����

�&'(��,
��!��������
	
�����
�,
���������
"� ����4
��&&*+
���0�� �
���#
���
�"�� ����

���#�
2��
���0
#���

In the preceding diagram, the high speed peripheral clock frequency is
received and then divided by the ADCLKPS. The reduced clock frequency
is then further divided by CPS. The resulting frequency is the ADCCLK
signal. The value of ACQ_PS then determines how many ADCCLK ticks
comprise one S/H (sample and hold) period, or in other words, the length of
the acquisition window.

Examples
The following examples show how you can use ADC parameters to configure
the acquisition window width:

Example 1:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5MHz.

If ACQ_PS = 0 (which is a value of 1), then the sample/hold period is 1
ADCCLK tick, or .1333 nano seconds.

3-7

3 Configuring Acquisition Window Width for ADC Blocks

Example 2:

If the HISPCLK = 30 MHz, and ADCLKPS=1 (which is a value of 2), the
result is 15MHz.

If CPS= 1 (which is a value of 2), then ADCCLK = 7.5MHz.

If ACQ_PS = 15 (which is a value of 16), then the sample/hold period is 16
ADCCLK ticks, or 2.1333 nano seconds.

3-8

4

Creating Stand-Alone
Applications by Saving
Code into Flash Memory

The Need for Stand-Alone
Applications (p. 4-2)

Explains the need and use for storing
code in Flash memory

Generating Code for Flash Memory
(p. 4-3)

Lists necessary steps to place
generated code into on-chip Flash
memory

Running Code from Flash Memory
(p. 4-5)

Describes the required steps to run
code from on-chip Flash memory

4 Creating Stand-Alone Applications by Saving Code into Flash Memory

The Need for Stand-Alone Applications
By default, the code generated through the Code Composer Studio (CCS)
is stored in RAM on the applicable chip and is discarded when the chip is
unplugged. However, there is often a need to save the generated code directly
on the DSP chip nonvolatile memory to reuse it for a different application
or environment. Flash memory allows this process to take place. Saving
the code in Flash, directly on the chip, allows the chip to be unplugged and
reused in a different application.

4-2

Generating Code for Flash Memory

Generating Code for Flash Memory
To store generated code in the internal Flash memory of the C28xx DSPs
specific parameters need to be set. You also need a Flash Programmer. The
following process guides you through the necessary steps:

1 On the Target Preferences block, open the Target Preferences
Setupdialog box. From BuildOptions > LinkerOptions >
LinkerCMDFile and select Flash_memory_map, as shown in the
following figure:

Selecting this option poinst the code generation to the on-chip Flash
memory.

2 Programming the on-chip Flash for TI C28xx DSPs requires a Flash
Programmer. The two most commonly used options are the TI’s Flash
Programmer plug-in to CCS or the Spectrum Digital ™ SDFlash. Refer

4-3

4 Creating Stand-Alone Applications by Saving Code into Flash Memory

to the specific vendor’s documentation for more information, and then
download and install a Flash Programmer of your choice.

3 Build and generate code in CCS. Then, launch the Flash Programmer to
erase, program, and verify the Flash. Your chip now contains the code
in its Flash memory.

4-4

Running Code from Flash Memory

Running Code from Flash Memory
Now that the code is saved in the C28xx DSP chip’s nonvolatile memory, you
must set an indicator for the chip before you can run this code. This indicator
is set by the Bootloader Modes of the particular chip. For example, on F2812
eZdsp, you need to adjust the jumper setting for JP7. On F2808 eZdsp, you
need to adjust the switches 1 and 3 on bank SW1. For precise instructions,
please refer to the specific DSP Boot ROM Reference Guide found on the TI
Wseb page and the Spectrum Digital ™ Reference Guides for the eZdsp chips.

4-5

http://www.ti.com/
http://c2000.spectrumdigital.com/ezf2812/

4 Creating Stand-Alone Applications by Saving Code into Flash Memory

4-6

5

Using the IQmath Library

About the IQmath Library (p. 5-2) Introduces the IQmath Library

Fixed-Point Numbers (p. 5-4) Representation of fixed-point
numbers in the IQmath Library

Building Models (p. 5-9) Issues to consider when you build
models with the IQmath Library

5 Using the IQmath Library

About the IQmath Library
The IQmath Library provides blocks that perform processor-optimized,
fixed-point mathematical operations. The blocks in the C28x IQmath Library
correspond to functions in the Texas Instruments C28x IQmath Library
assembly-code library, which target the TI C28x family of digital signal
processors.

Note The implementation of this library for the TI C28x processor produces
the same simulation and code-generation output as the TI version of this
library, but it does not use a global Q value, as does the TI version. The Q
format is dynamically adjusted based on the Q format of the input data.

The IQmath Library blocks generally input and output fixed-point data types
and use numbers in Q format. The C28x IQmath Library block reference
pages discuss the data types accepted and produced by each block in the
library. For more information on fixed-point numbers and Q format, see

• “Fixed-Point Numbers” on page 5-4. In addition, see the Simulink Fixed
Point documentation, which includes more information on fixed-point data
types and scaling and precision issues.

• “Q Format Notation” on page 5-5

You can use these blocks with some core Simulink blocks and Simulink
Fixed Point blocks to run simulations in Simulink models before generating
code. Once you develop your model, you can invoke Real-Time Workshop to
generate equivalent code that is optimized to run on a TI C28x DSP. During
code generation, a call is made to the IQmath Library for each IQmath
Library block in your model to create target-optimized code. To learn more
about creating models that include both IQmath Library blocks and blocks
from other blocksets, refer to “Building Models” on page 5-9.

Common Characteristics
The following characteristics are common to all IQmath Library blocks:

• Sample times are inherited from driving blocks.

5-2

About the IQmath Library

• Blocks are single rate.

• Parameters are not tunable.

• All blocks support discrete sample times.

To learn more about characteristics particular to each block in the library, see
“C28x IQmath (tiiqmathlib)” on page 6-11 for links to the individual block
reference pages.

5-3

5 Using the IQmath Library

Fixed-Point Numbers
In digital hardware, numbers are stored in binary words. A binary word is a
fixed-length sequence of binary digits (1’s and 0’s). How hardware components
or software functions interpret this sequence of 1’s and 0’s is defined by the
data type.

Binary numbers are used to represent either fixed-point or floating-point data
types. A fixed-point data type is characterized by the word size in bits, the
binary point, and whether it is signed or unsigned. The position of the binary
point is the means by which fixed-point values are scaled and interpreted.

For example, a binary representation of a fractional fixed-point number
(either signed or unsigned) is shown below:

where

• is the ith binary digit.

• is the word size in bits.

• is the location of the most significant (highest) bit (MSB).

• is the location of the least significant (lowest) bit (LSB).

• The binary point is shown four places to the left of the LSB. In this
example, therefore, the number is said to have four fractional bits, or a
fraction length of 4.

Signed Fixed-Point Numbers
Signed binary fixed-point numbers are typically represented in one of three
ways:

• Sign/magnitude

• One’s complement

5-4

Fixed-Point Numbers

• Two’s complement

Two’s complement is the most common representation of signed fixed-point
numbers and is used by TI digital signal processors.

Negation using signed two’s complement representation consists of a bit
inversion (translation into one’s complement) followed by the binary addition
of a 1. For example, the two’s complement of 000101 is 111011, as follows:

000101 ->111010 (bit inversion) ->111011 (binary addition of a 1 to the
LSB)

Q Format Notation
The position of the binary point in a fixed-point number determines how you
interpret the scaling of the number. When it performs basic arithmetic such
as addition or subtraction, hardware uses the same logic circuits regardless of
the value of the scale factor. In essence, the logic circuits have no knowledge of
a binary point. They perform signed or unsigned integer arithmetic — as if the
binary point is to the right of b0. Therefore, you determine the binary point.

In the IQmath Library, the position of the binary point in the signed,
fixed-point data types is expressed in and designated by Q format notation.
This fixed-point notation takes the form

Qm.n

where

• Q designates that the number is in Q format notation — the Texas
Instruments representation for signed fixed-point numbers.

• m is the number of bits used to designate the two’s complement integer
portion of the number.

• n is the number of bits used to designate the two’s complement fractional
portion of the number, or the number of bits to the right of the binary point.

In Q format, the most significant bit is always designated as the sign bit.
Representing a signed fixed-point data type in Q format always requires
m+n+1 bits to account for the sign.

5-5

5 Using the IQmath Library

Note The range and resolution varies for different Q formats. For specific
details, see Section 3.2 in the Texas Instruments C28x Foundation Software,
IQmath Library Module User’s Guide.

When converting from Q format to floating-point format, the accuracy of the
conversion depends on the values and formats of the numbers. For example,
for single-precision floating-point numbers, which use 24 bits, the resolution
of the corresponding 32-bit number cannot be attained. The 24-bit number
approximates its value by truncating the lower end. For example:

32-bit integer 11110000 11001100 10101010 00001111
Single-precision float +1.1110000 11001100 10101010 x 231
Corresponding value 11110000 11001100 10101010 00000000

Example — Q.15
For example, a signed 16-bit number with n = 15 bits to the right of the binary
point is expressed as

Q0.15

in this notation. This is (1 sign bit) + (m = 0 integer bits) + (n = 15 fractional
bits) = 16 bits total in the data type. In Q format notation, the m = 0 is often
implied, as in

Q.15

In Simulink Fixed Point, this data type is expressed as

sfrac16

or

sfix16_En15

In the Filter Design Toolbox, this data type is expressed as

[16 15]

5-6

Fixed-Point Numbers

Example — Q1.30
Multiplying two Q.15 numbers yields a product that is a signed 32-bit data
type with n = 30 bits to the right of the binary point. One bit is the designated
sign bit, thereby forcing m to be 1:

m+n+1 = 1+30+1 = 32 bits total

Therefore, this number is expressed as

Q1.30

In Simulink Fixed Point, this data type is expressed as

sfix32_En30

In the Filter Design Toolbox, this data type is expressed as

[32 30]

Example — Q-2.17
Consider a signed 16-bit number with a scaling of 2(-17). This requires n = 17
bits to the right of the binary point, meaning that the most significant bit
is a sign-extended bit.

Sign extension fills additional bits with the value of the MSB. For example,
consider a 4-bit two’s complement number 1011. When this number is
extended to 7 bits with sign extension, the number becomes 1111101 and the
value of the number remains the same.

One bit is the designated sign bit, forcing m to be -2:

m+n+1 = -2+17+1 = 16 bits total

Therefore, this number is expressed as

Q-2.17

In Simulink Fixed Point, this data type is expressed as

sfix16_En17

5-7

5 Using the IQmath Library

In the Filter Design Toolbox, this data type is expressed as

[16 17]

Example — Q17.-2
Consider a signed 16-bit number with a scaling of 2^(2) or 4. This means that
the binary point is implied to be 2 bits to the right of the 16 bits, or that there
are n = -2 bits to the right of the binary point. One bit must be the sign bit,
thereby forcing m to be 17:

m+n+1 = 17+(-2)+1 = 16

Therefore, this number is expressed as

Q17.-2

In Simulink Fixed Point, this data type is expressed as

sfix16_E2

In the Filter Design Toolbox, this data type is expressed as

[16 -2]

5-8

Building Models

Building Models
You can use IQmath Library blocks in models along with certain core
Simulink, Simulink Fixed Point, and other blockset blocks. This section
discusses issues you should consider when building a model with blocks from
these different libraries.

Converting Data Types
As always, it is vital to make sure that any blocks you connect in a model
have compatible input and output data types. In most cases, IQmath Library
blocks handle only a limited number of specific data types. You can refer to
any block reference page in the alphabetical block reference for a discussion of
the data types that the block accepts and produces.

When you connect IQmath Library blocks and Simulink Fixed Point blocks,
you often need to set the data type and scaling in the block parameters of the
Simulink Fixed Point block to match the data type of the IQmath Library
block. Many Simulink Fixed Point blocks allow you to set their data
type and scaling through inheritance from the driving block, or through
backpropagation from the next block. This can be a good way to set the data
type of a Simulink Fixed Point block to match a connected IQmath Library
block.

Some Signal Processing Blockset blocks and core Simulink blocks also accept
fixed-point data types. Make the appropriate settings in these blocks’
parameters when you connect them to an IQmath Library block.

Using Sources and Sinks
The IQmath Library does not include source or sink blocks. Use source or
sink blocks from the core Simulink library or Simulink Fixed Point in your
models with IQmath Library blocks.

Choosing Blocks to Optimize Code
In some cases, blocks that perform similar functions appear in more than
one blockset. For example, both the IQmath Library and Simulink Fixed
Point have a Multiply block. When you are building a model to run on C2000
DSP, choosing the block from the IQmath Library always yields better

5-9

5 Using the IQmath Library

optimized code. You can use a similar block from another library if it gives
you functionality that the IQmath Library block does not support, but you
will generate code that is less optimized.

5-10

6

Blocks — By Category

C2000 Target Preferences
(c2000tgtpreflib) (p. 6-2)

Target preference blocks for C2000
boards

Host-Side CAN Blocks (c2000canlib)
(p. 6-3)

Host-Side CAN blocks

Host-Side SCI Blocks (c2000scilib)
(p. 6-4)

Host-Side SCI blocks

C2000 RTDX Instrumentation
(rtdxBlocks) (p. 6-5)

RTDX blocks for C2000 boards

C2400 DSP Chip Support
(c2400dspchiplib) (p. 6-6)

Blocks that support C24x boards

C280x DSP Chip Support
(c280xdspchiplib) (p. 6-7)

Blocks that support C280x boards

C281x DSP Chip Support
(c281xdspchiplib) (p. 6-8)

Blocks that support C281x boards

C28x Digital Motor Control
(c28xdmclib) (p. 6-10)

Blocks that represent the
functionality of the TI C28x
DMC Library

C28x IQmath (tiiqmathlib) (p. 6-11) Blocks that represent the
functionality of the TI IQmath
Library

6 Blocks — By Category

C2000 Target Preferences (c2000tgtpreflib)

Custom C280x Board Target preferences for custom C280x
board

Custom C281x Board Target preferences for custom C281x
board

F2808 eZdsp F2808 eZdsp DSK target preferences

F2812 eZdsp F2812 eZdsp DSK target preferences

LF2407 eZdsp LF2407 eZdsp DSK target
preferences

6-2

Host-Side CAN Blocks (c2000canlib)

Host-Side CAN Blocks (c2000canlib)
See the “CAN Blockset Reference” for information on these blocks.

6-3

6 Blocks — By Category

Host-Side SCI Blocks (c2000scilib)

SCI Receive Configure host-side serial
communications interface to
receive data from serial port

SCI Setup Configure COM ports for host-side
SCI Transmit and Receive blocks

SCI Transmit Configure host-side serial
communications interface to
transmit data to serial port

6-4

C2000 RTDX Instrumentation (rtdxBlocks)

C2000 RTDX Instrumentation (rtdxBlocks)
From RTDX Add RTDX input channel

To RTDX Add RTDX output channel

6-5

6 Blocks — By Category

C2400 DSP Chip Support (c2400dspchiplib)

C24x ADC Analog-to-digital converter (ADC)

C24x CAN Receive Enhanced Control Area Network
(CAN) receive mailbox

C24x CAN Transmit Enhanced Control Area Network
(CAN) transmit mailbox

C24x CAP Receive and log capture input pin
transitions

C24x GPIO Digital Input General-purpose I/O pins for digital
input

C24x GPIO Digital Output General-purpose I/O pins for digital
output

C24x PWM Pulse width modulators (PWMs)

C24x QEP Quadrature encoder pulse circuit

C24x SCI Receive Receive data on target via serial
communications interface (SCI) from
host

C24x SCI Transmit Transmit data on target via serial
communications interface (SCI) from
host

C24x SPI Receive Receive data via serial peripheral
interface (SPI) on target

C24x SPI Transmit Transmit data via serial peripheral
interface (SPI) to host

From Memory Retrieve data from target memory

To Memory Write data to target memory

6-6

C280x DSP Chip Support (c280xdspchiplib)

C280x DSP Chip Support (c280xdspchiplib)

C280x ADC Analog-to-digital converter (ADC)

C280x eCAN Receive Enhanced Control Area Network
receive mailbox

C280x eCAN Transmit Enhanced Control Area Network
transmit mailbox

C280x ePWM Configure C280x Event Manager
to generate Enhanced Pulse Width
Modulator (ePWM) waveforms

C280x eQEP Quadrature encoder pulse circuit

C280x Hardware Interrupt Create Interrupt Service Routine to
handle hardware interrupts

C280x SCI Receive Receive data on target via serial
communications interface (SCI) from
host

C280x SCI Transmit Transmit data from target via serial
communications interface (SCI) to
host

C280x SPI Receive Receive data via the serial peripheral
interface (SPI) on the target

C280x SPI Transmit Transmit data via the serial
peripheral interface (SPI) to the host

From Memory Retrieve data from target memory

Idle Task Create free-running task that
executes downstream subsystem

To Memory Write data to target memory

6-7

6 Blocks — By Category

C281x DSP Chip Support (c281xdspchiplib)

C281x ADC Analog-to-digital converter (ADC)

C281x CAP Receive and log capture input pin
transitions

C281x eCAN Receive Enhanced Control Area Network
receive mailbox

C281x eCAN Transmit Enhanced Control Area Network
transmit mailbox

C281x GPIO Digital Input General-purpose I/O pins for digital
input

C281x GPIO Digital Output General-purpose I/O pins for digital
output

C281x Hardware Interrupt Create Interrupt Service Routine to
handle hardware interrupts

C281x PWM Pulse wave modulators (PWMs)

C281x QEP Quadrature encoder pulse circuit

C281x SCI Receive Receive data on target via serial
communications interface (SCI) from
host

C281x SCI Transmit Transmit data from target via serial
communications interface (SCI) to
host

C281x SPI Receive Receive data via serial peripheral
interface (SPI) on target

C281x SPI Transmit Transmit data via serial peripheral
interface (SPI) to host

C281x Timer Configure up to four general-purpose,
stand alone Event Manager timers

From Memory Retrieve data from target memory

6-8

C281x DSP Chip Support (c281xdspchiplib)

Idle Task Create free-running task that
executes downstream subsystem

To Memory Write data to target memory

6-9

6 Blocks — By Category

C28x Digital Motor Control (c28xdmclib)

Clarke Transformation Convert balanced three-phase
quantities to balanced two-phase
quadrature quantities

Inverse Park Transformation Convert rotating reference frame
vectors to two-phase stationary
reference frame

Park Transformation Convert two-phase stationary
system vectors to rotating system
vectors

PID Controller Digital PID controller

Ramp Control Create ramp-up and ramp-down
function

Ramp Generator Generate ramp output

Space Vector Generator Duty ratios for stator reference
voltage

Speed Measurement Motor speed

6-10

C28x IQmath (tiiqmathlib)

C28x IQmath (tiiqmathlib)

Absolute IQN Absolute value

Arctangent IQN Four-quadrant arc tangent

Division IQN Divide two IQ numbers

Float to IQN Convert floating-point number to IQ
number

Fractional part IQN Fractional part of IQ number

Fractional part IQN x int32 Fractional part of result of
multiplying IQ number and long
integer

Integer part IQN Integer part of IQ number

Integer part IQN x int32 Integer part of result of multiplying
IQ number and long integer

IQN to Float Convert IQ number to floating-point
number

IQN x int32 Multiply IQ number with long
integer

IQN x IQN Multiply two IQ numbers with same
Q format

IQN1 to IQN2 Convert IQ number to different Q
format

IQN1 x IQN2 Multiply two IQ numbers with
different Q formats

Magnitude IQN Magnitude of two orthogonal IQ
numbers

Saturate IQN Saturate IQ number

Square Root IQN Square root or inverse square root
of IQ number

Trig Fcn IQN Sine, cosine, or arc tangent of IQ
number

6-11

6 Blocks — By Category

6-12

7

Blocks — Alphabetical List

Absolute IQN

Purpose Absolute value

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block computes the absolute value of an IQ number input. The
output is also an IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Arctangent IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-2

Arctangent IQN

Purpose Four-quadrant arc tangent

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description The Arctangent IQN block computes the four-quadrant arc tangent of
the IQ number inputs and produces IQ number output.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Function
Type of arc tangent to calculate:

• atan2 — Compute the four-quadrant arc tangent with output
in radians with values from -pi to +pi.

• atan2PU — Compute the four-quadrant arc tangent
per unit. If atan2(B,A) is greater than or equal to 0,
atan2PU(B,A) = atan2(B,A)/2*pi. Otherwise, atan2PU(B,A)

7-3

Arctangent IQN

= atan2(B,A)/2*pi+1. The output is in per-unit radians with
values from 0 to 2*pi radians.

See Also Absolute IQN, Division IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-4

C24x ADC

Purpose Analog-to-digital converter (ADC)

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x ADC block configures the C24x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C24x ADC trigger mode depends on the internal setting of the
source start-of-conversion (SOC) signal. The ADC is usually triggered
by software at the sample time intervals specified in the ADC block —
this is unsynchronized mode. For more information on configuring the
specific parameters for this mode, see “Configuring Acquisition Window
Width for ADC Blocks”.

In synchronized mode, the Event Manager (EV) associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. ADC Start Event is set in the C24x PWM block. See that
block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output

The output of the C24x ADC is a vector of uint16 values. The output
values are in the range 0 to 1023 because the C24x ADC is a 10-bit
converter.

7-5

C24x ADC

Modes

The C24x ADC block supports ADC sequential operation in dual and
cascaded modes. In dual mode, either module A or module B can be
used for the ADC block, and two ADC blocks are allowed in the model.
In cascaded mode, both module A and module B are used for a single
ADC block.

Dialog
Box

ADC Control pane

Module
Specifies which DSP module to use:

• A — Enables the ADC channels in module A (ADCINA0 through
ADCINA7).

• B — Enables the ADC channels in module B (ADCINB0 through
ADCINB7).

• A and B — Enables the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7).

7-6

C24x ADC

Start of conversion
Type of signal that triggers sequential conversions to begin:

• Software — Signal from software

• EVA — Signal from Event Manager A

• EVB — Signal from Event Manager B

• External pin — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-11 for more information on timing.

To set different sample times for different groups of ADC channels,
you must add separate C24x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

7-7

C24x ADC

Input Channels pane

Number of conversions
Number of analog-to-digital conversions to perform in a single
sampling sequence.

Conversion no.
Specific ADC channel to associate with each conversion number.

In simultaneous mode, a pair of ADC channels is associated with
each conversion. In oversampling mode, a signal at a given ADC
channel can be sampled multiple times during a single conversion
sequence. To oversample, specify the same channel for more than
one conversion.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

7-8

C24x ADC

Note The Discrete Filter block in Simulink accepts only mono
input. To connect a C24x ADC block to this block, you must output
a single channel or connect only one of the ADC’s output ports to
a Discrete Filter block.

See Also C24x PWM

7-9

C24x CAN Receive

Purpose Enhanced Control Area Network (CAN) receive mailbox

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x CAN Receive block generates source code for receiving CAN
messages through a CAN mailbox. The CAN module on the DSP chip
provides serial communication capability and has six mailboxes —
two for receive, two for transmit, and two configurable for receive or
transmit. The C24x chip supports CAN data frames in standard or
extended format.

The C24x CAN Receive block has up to two and, optionally, three output
ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
(See Data type below for information.)

• The third output port is optional and appears only if Output
message length is selected.

7-10

C24x CAN Receive

Dialog
Box

Mailbox number
Unique number from 0 to 5 that refers to a mailbox area in RAM.
Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes.
In standard data frame mode, the mailbox number determines
priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a
receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

7-11

C24x CAN Receive

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox.

Note For information about setting the timing parameters of
the CAN module see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are rightaligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes

data_buffer[0] = 0x21

7-12

C24x CAN Receive

data_buffer[1] = 0x43

then the uint16 output would be

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

References Detailed information on the CAN module is in the TMS320LF/LC240xA
DSP Controller Reference Guide — System and Peripherals, Literature
Number SPRU357B, available at the Texas Instruments Web site.

See Also C24x CAN Transmit

7-13

C24x CAN Transmit

Purpose Enhanced Control Area Network (CAN) transmit mailbox

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x CAN Transmit block generates source code for transmitting
CAN messages through a CAN mailbox. The CAN module on the DSP
chip provides serial communication capability and has six mailboxes
— two for receive, two for transmit, and two configurable for receive
or transmit. The C24x chip supports CAN data frames in standard
or extended format.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always rightaligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is

7-14

C24x CAN Transmit

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-15

C24x CAN Transmit

Dialog
Box

Mailbox number
Unique number from 0 to 5 that refers to a mailbox area in RAM.
Mailboxes 0 and 1 are receive mailboxes, 2 and 3 are configurable
for receive or transmit, and 4 and 5 are transmit mailboxes.
In standard data frame mode, the mailbox number determines
priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If cleared, the CAN block code does not wait

7-16

C24x CAN Transmit

for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Note For information about setting the timing parameters of the CAN
module see “Configuring Timing Parameters for CAN Blocks”.

References Detailed information on the CAN module is in the TMS320LF/LC240xA
DSP Controller Reference Guide — System and Peripherals, Literature
Number SPRU357B, available at the Texas Instruments Web site.

See Also C24x CAN Receive

7-17

C24x CAP

Purpose Receive and log capture input pin transitions

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x CAP block sets parameters for the capture units (CAPs) of the
Event Manager (EV) module. The capture units log transitions detected
on the capture unit pins by recording the times of these transitions into
a two-level deep FIFO stack. The capture unit pins can be set to detect
rising edge, falling edge, either type of transition, or no transition.

The C24x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Note You can have up to two C24x CAP blocks in any one model — one
block for each EV module.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the value of the selected timer is stored in the
two-level deep FIFO stack.

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output increments each time a
transition of the selected type occurs. The status flag outputs are

• 0 — The FIFO is empty. Either no captures have occurred or the
previously stored capture(s) have been read from the stack. (The
binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

7-18

C24x CAP

• 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

• 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in
the bottom register. The bottom register value is pushed to the top of
the stack and the top value is pushed out of the stack. (The binary
version of this flag is 11.)

Dialog
Box

Data Format pane

Module
Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.

• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

7-19

C24x CAP

Output data format
The type of data to output:

• Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP
registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output
at index 0.

c The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

• Send 1 element (oldest) — Sends the older of the two most
recent values. The output is updated when there is at least
one element in the FIFO, which is indicated by any of the bits
13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or
9:8 being sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b If there are two entries in the FIFO, the bottom value is read
and stored in the output. If there is only one entry in the
FIFO, the top value is read and stored in the output.

7-20

C24x CAP

Sample time
Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
Selecting auto defaults to double.

CAP# pane

The CAP # panes set parameters for individual CAPs. The particular
CAP affected by a CAP # pane depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

Enable CAP#
Select to use the specified capture unit pin.

7-21

C24x CAP

Edge detection
Type of transition detection to use for this CAP. Available types are
Rising Edge, Falling Edge, Both Edges, and No transition.

Time base
The target board GP timer to use. CAPs 1, 2, and 3 can use
Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or
Timer 4.

Note CAP 1 and CAP 2 must use the same GP timer.
CAP 4 and CAP 5 must use the same GP timer.

Scaling
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. The resulting
rate for each option is shown below.

Scaling Resulting Rate (µs)

none 0.025

1/2 0.05

1/4 0.1

1/8 0.2

1/16 0.4

1/32 0.8

1/64 1.6

1/128 3.2

Note The above rates assume a 40–MHz input clock.

7-22

C24x GPIO Digital Input

Purpose General-purpose I/O pins for digital input

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Dialog
Box

IO Port
Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE,
or IOPF and select the I/O port bits to enable for digital input. If

7-23

C24x GPIO Digital Input

you select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Note that multiple C24x
GPIO DI blocks cannot share the same I/O port. Only one bit is
available for IOPD.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

IO MUX Output Control Register A

Bit Peripheral Name GPIO Name

3 QEP1/CAP1 IOPA3

4 QEP2/CAP2 IOPA4

5 CAP3 IOPA5

6 PWM1 IOPA6

7 PWM2 IOPA7

8 PWM3 IOPB0

9 PWM4 IOPB1

10 PWM5 IOPB2

11 PWM6 IOPB3

7-24

C24x GPIO Digital Input

IO MUX Output Control Register C

Bit Peripheral Name GPIO Name

1 PWM7 IOPE1

2 PWM8 IOPE2

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3/CAP4 IOPE7

8 QEP4/CAP5 IOPF0

9 CAP6 IOPF1

Sample time
Time interval, in seconds, between consecutive input from the
pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

See Also C24x GPIO Digital Output

7-25

C24x GPIO Digital Output

Purpose General-purpose I/O pins for digital output

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Note The input function of the digital I/O and the input path to the
related peripheral are always enabled on the board. If you configure a
pin as digital I/O, the corresponding peripheral function cannot be used.

The following tables show the shared pins.

IO MUX Output Control Register A

Bit Peripheral Name GPIO Name

3 QEP1/CAP1 IOPA3

4 QEP2/CAP2 IOPA4

5 CAP3 IOPA5

6 PWM1 IOPA6

7 PWM2 IOPA7

8 PWM3 IOPB0

9 PWM4 IOPB1

10 PWM5 IOPB2

11 PWM6 IOPB3

7-26

C24x GPIO Digital Output

IO MUX Output Control Register C

Bit Peripheral Name GPIO Name

1 PWM7 IOPE1

2 PWM8 IOPE2

3 PWM9 IOPE3

4 PWM10 IOPE4

5 PWM11 IOPE5

6 PWM12 IOPE6

7 QEP3/CAP4 IOPE7

8 QEP4/CAP5 IOPF0

9 CAP6 IOPF1

7-27

C24x GPIO Digital Output

Dialog
Box

IO Port
Select the input/output port to use: IOPA, IOPB, IOPC, IOPD, IOPE,
or IOPF and select the bits to enable for digital output. If you
select multiple bits, vector input is expected. Cleared bits are
available for peripheral functionality. Note that multiple C24x
GPIO DO blocks cannot share the same I/O port. Only one bit is
available for IOPD.

See Also C24x GPIO Digital Input

7-28

C24x PWM

Purpose Pulse width modulators (PWMs)

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description LF2407 DSPs include a set of pulse width modulators used to generate
various signals. This block provides options to set the A or B module
Event Managers to generate the waveforms you require. The 12 PWMs
are configured in six pairs, with three pairs in each module.

Note All inputs to the C24x PWM block must be scalar values.

7-29

C24x PWM

Dialog
Box

Timer pane

Module
Specifies which target PWM pairs to use:

• A — Enables the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWM6).

• B — Enables the PWMs in module B (PWM7/PWM8,
PWM9/PWM10, and PWM11/PWM12).

7-30

C24x PWM

Note PWMs in module A use Event Manager A, timer 1, and
PWMs in module B use Event Manager B, timer 3. You should
make sure that the TimerClock selected in the Scheduling
section of the LF2407 eZdsp Target Preferences block does not
conflict with the timers used for the PWMs.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the peripheral clock on the
LF2407 chip. This clock is 40 MHz by default because the timer
prescaler is set to 1.

Waveform type
Type of waveform to be generated by the PWM pair. The LF2407
PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference
between the two types of waveforms.

7-31

C24x PWM

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the peripheral clock on the LF2407
chip (40 MHz), or Seconds. Note that changing these units
changes the Waveform period value and the Duty cycle value
and Duty cycle units selection.

7-32

C24x PWM

Outputs pane

Enable PWM#/PWM#
Select to activate the PWM pair(s).

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
Cycle or select Input port to use a value, in seconds, from the
input port.

Duty cycle
PWM waveform pulse duration expressed in Duty cycle units.

7-33

C24x PWM

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Note that changing these units changes the Duty
cycle value, and the Waveform period value and Waveform
period units selection.

Logic pane

Control logic source
Source from which the control logic is obtained for all PWMs.
Select Specify via dialog to enter the values in the PWM#
control logic fields or select Input port to use values from the
input port.

7-34

C24x PWM

PWM# control logic
Control logic trigger for the PWM. Forced high causes the pulse
value to be high. Active high causes the pulse value to go from
low to high. Active low causes the pulse value to go from high to
low. Forced low causes the signal to be low.

Deadband pane

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning
of particular PWM pair signals. The following figure shows the
deadband area.

7-35

C24x PWM

Deadband prescaler
Number of clock cycles, which when multiplied by the deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which to obtain the deadband period. Select Specify
via dialog to enter the value in Deadband period or select
Input port to use a value, in clock cycles, from an external source.

Deadband period
Value that, when multiplied by the deadband prescaler,
determines the size of the deadband. Selectable values are from 1
to 15 clock cycles.

7-36

C24x PWM

ADC Control pane

ADC start event
Controls whether this PWM and ADC associated with the same
EV module are synchronized. Select None for no synchronization
or select an interrupt to generate the source start-of-conversion
(SOC) signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by
software (that is, the analog-to-digital conversion occurs when
the ADC block is executed in the software).

7-37

C24x PWM

• Underflow interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
general-purpose (GP) timer counter reaches a hexadecimal
value of FFFFh.

• Period interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value of
the GP timer matches the value in the period register. The
value set in Waveform period above determines the value
in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(CPU clock
speed), zero-order hold interpolation will occur. For example,
if you enter 64000 as the waveform period, the period for the
ADC register is 64000/40 MHz = 0.0016. If you enter a Sample
time in the C24x ADC dialog box that is less than this result, it
will cause zero-order hold interpolation.

• Compare interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value in the
GP timer matches the value in the compare register. The value
set in Duty cycle above determines the value in the register.

See Also C24x ADC

7-38

C24x QEP

Purpose Quadrature encoder pulse circuit

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description Each L2407 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event Manager A (EVA) uses
capture units 1, 2, and 3. Event Manager B (EVB) uses capture units
4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). Both edges of
the QEP pulses are counted so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful
for obtaining speed and position information from a rotating machine.
Logic in the QEP circuit determines the direction of rotation by which
sequence is leading. For module A, if the QEP1 sequence leads, the
general-purpose (GP) timer counts up and if the QEP2 sequence leads,
the timer counts down. The pulse count and frequency determine the
angular position and speed.

7-39

C24x QEP

Dialog
Box

Module
Specifies which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

• B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

• Counter — Count the pulses based on the board’s GP Timer 2
(or GP Timer 4 for EVB).

• RPM — Count the machine’s revolutions per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM above.

Encoder resolution
Number of QEP pulses per revolution. This field appears only
if you select RPM above.

7-40

C24x QEP

Sample time
Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto,
double, single, int8, uint8, int16, uint16, int32, uint32, or
boolean.

7-41

C24x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in nonreturn-to-zero (NRZ) format. This block configures the C24x DSP
target to receive scalar or vector data from the COM port via the C24x
target’s COM port.

Note You can have only one C24x SCI Receive block in a single model.

Many SCI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

Dialog
Box

7-42

C24x SCI Receive

Note If you open this block from the SCI-Based Host-Target
Communication demo, you will see an additional parameter used only
in that demo.

Sample time
Sample time, Ts, for the block’s input sampling.

Data type
Data type of the output data. Available options are int8 and
uint8.

See Also C24x SCI Transmit

7-43

C24x SCI Transmit

Purpose Transmit data on target via serial communications interface (SCI) from
host

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SCI Transmit block transmits scalar or vector data in int8 or
uint8 format from the C24x target’s COM ports in nonreturn-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
If no data type is specified, the default data type is uint8.

Note You can have only one C24x SCI Transmit block in a single model.

Many SCI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

Dialog
Box

7-44

C24x SCI Transmit

Note The parameter shown in this block is active only for demos, i.e.,
if you open the block from the SCI-Based Host-Target Communication
demo.

See Also C24x SCI Receive

7-45

C24x SPI Receive

Purpose Receive data via serial peripheral interface (SPI) on target

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SPI Receive block supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

Note You can have only one C24x SPI Receive block in a single model.

Many SPI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

Dialog
Box

7-46

C24x SPI Receive

Sample time
Sample time, Ts, for the block’s input sampling.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.

See Also C24x SPI Transmit

7-47

C24x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library c2400dspchiplib in Embedded Target for TI C2000 DSP

Description The C24x SPI Transmit block supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If
no data type is specified, the default data type is uint16.

Note You can have only one C24x SPI Transmit block in a single model.

Many SPI-specific settings are in the DSPBoard section of the LF2407
eZdsp target preferences block. You should verify that these settings
are correct for your application.

Dialog
Box

See Also C24x SPI Receive

7-48

C280x ADC

Purpose Analog-to-digital converter (ADC)

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x ADC block configures the C280x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Output

The output of the C280x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C280x ADC is 12-bit
converter.

Modes

The C280x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

7-49

C280x ADC

Dialog
Box

ADC Control pane

Module
Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7).

Conversion mode
Type of sampling to use for the signals:

• Sequential — Samples the selected channels sequentially.

7-50

C280x ADC

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time.

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software. Conversion values are
updated at each sample time.

• ePWMxA / ePWMxB / ePWMxA_ePWMxB — Start of conversion is
controlled by user-defined PWM events.

• XINT2_ADCSOC — Start of conversion is controlled by the
XINT2_ADCSOC external signal pin.

The choices available in Start of conversion depend on the
Module setting. The following table summarizes the available
choices. For each set of Start of conversion choices, the default
is given first.

Module
Setting

Start of Conversion Choices

A Software, ePWMxA, XINT2_ADCSOC

B ePWMxB, Software

A and B Software, ePWMxA, ePWMxB, ePWMxA_ePWMxB,
XINT2_ADCSOC

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-11 for more information on timing. To
execute this block asynchronously, set Sample Time to -1, check
the Post interrupt at the end of conversion box, and refer to
“Asynchronous Interrupt Processing” on page 1-13 for a discussion
of block placement and other necessary settings.

7-51

C280x ADC

To set different sample times for different groups of ADC channels,
you must add separate C280x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

Post interrupt at the end of conversion
Select this check box to post an asynchronous interrupt at the
end of each conversion. Note that the interrupt is always posted
at the end of conversion. To execute this block asynchronously,
set Sample Time to -1, and refer to “Asynchronous Interrupt
Processing” on page 1-13 for a discussion of block placement and
other necessary settings.

Input Channels pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

7-52

C280x ADC

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C280x ePWM, C280x Hardware Interrupt, “Configuring Acquisition
Window Width for ADC Blocks”

7-53

C280x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x enhanced Control Area Network (eCAN) Receive block
generates source code for receiving eCAN messages through an
eCAN mailbox. The eCAN modules on the DSP chip provide serial
communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x supports eCAN data frames in standard
or extended format.

The C28x eCAN Receive block has up to two and, optionally, three
output ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes. The message data port will
always output data. When the block is used in polling mode, if there
is no new message created between the consecutive executions of the
block, then the old message, or the existing message, is repeated.

• The third output port is optional and appears only if Output
message length is selected.

7-54

C280x eCAN Receive

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the C280x eCAN Receive block. Options are
eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a

7-55

C280x eCAN Receive

receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox. If you want to update the message
output only when a new message arrives, then the block needs to
be executed asynchronously. To execute this block asynchronously,
set Sample Time to -1, check the Post interrupt when
message is received box, and refer to “Asynchronous Interrupt
Processing” on page 1-13 for a discussion of block placement and
other necessary settings.

Note For information about setting the timing parameters of
the CAN module see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are rightaligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

7-56

C280x eCAN Receive

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

For example, if the received message has two bytes,

data_buffer[0] = 0x21
data_buffer[1] = 0x43

then the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Select this check box to post an asynchronous interrupt when a
message is received.

References Detailed information on the eCAN module is in the TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

See Also C280x eCAN Transmit, C280x Hardware Interrupt

7-57

C280x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN modules on the DSP chip provide serial
communication capability and have 32 mailboxes configurable for
receive or transmit. The C280x supports eCAN data frames in standard
or extended format.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer:

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

7-58

C280x eCAN Transmit

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-59

C280x eCAN Transmit

Dialog
Box

Module
Determines which of the two eCAN modules is being configured
by this instance of the C280x eCAN Transmit block. Options are
eCAN_A and eCAN_B.

Mailbox number
Unique number from 0 to 15 for standard or from 0 to 31 for
enhanced CAN mode. It refers to a mailbox area in RAM. In
standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

7-60

C280x eCAN Transmit

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If not selected, the CAN block code does not
wait for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

Note For information about setting the timing parameters of the CAN
module see “Configuring Timing Parameters for CAN Blocks”.

References Detailed information on the eCAN module is in the TMS320x281x, 280x
Enhanced Controller Area Network (eCAN) Reference Guide (Rev. D),
Literature Number SPRU074D, available at the Texas Instruments
Web site.

See Also C280x eCAN Receive

7-61

C280x ePWM

Purpose Configure C280x Event Manager to generate Enhanced Pulse Width
Modulator (ePWM) waveforms

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description A C280x system contains multiple ePWM modules, each having two
PWM outputs. The C280x ePWM block lets you configure up to six
ePWM modules.

7-62

C280x ePWM

Dialog
Box

General pane

Module
Specifies which target ePWM module to use. Possible values are
ePWM1 through ePWM6.

Waveform period units
Specifies the units in which the Waveform period is expressed.
Choose Seconds (the default) or Clock cycles.

7-63

C280x ePWM

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in Waveform period units.

Note The term clock cycles refers to the Time-base Clock on
the C280x chip. See the discussion of the TB clock prescaler
divider below for an explanation of how the Time-base Clock
speed is calculated.

Counting mode
Specifies the counting mode in which to operate. C280x PWMs
can operate in three distinct counting modes: Up, Down, and
Up-Down. The following illustration shows the waveforms that
correspond to these three modes:

Sync output selection
Specifies the source that generates the EPWMxSYNCO signal,
if any. The available choices are EPWMxSYNCI or SWFSYNC,
CTR=Zero, CTR=CMPB, and Disable (the default).

7-64

C280x ePWM

Enable S/W sync input port
This check box appears only when you choose EPWMxSYNCI or
SWFSYNC in Sync output selection. Check to enable the input
port.

Enable phase offset source
Determines whether the ePWM module will use a phase offset
and, if so, its source. Choices are Input port (the default),
Specify via dialog, and Disable.

Phase offset value
This field appears only when you select Specify via dialog in
Enable phase offset source. Enter the counter phase offset
value relative to the time-base that is supplying the sync-in signal.

TB clock prescaler divider
This value, together with the High Speed TB clock prescaler
divider value, determine the clock speed of the Time-Base
submodule, which provides all event timing for the ePWM. The
Time-base Clock’s speed (TBCLK) is the result of dividing the
system clock speed by the product of the High Speed TB clock
prescaler divider (HSPCLKDIV) and the TB clock prescaler
divider (CLKDIV) as in the following formula:

TBCLK = SYSCLKOUT/(HSPCLKDIV * CLKDIV)

Because the default values for both the High Speed TB clock
prescaler divider and the High Speed TB clock prescaler
divider are both 1, the default value of the Time-base Clock is
equal to the system clock speed of 100 MHz

Choices are 1, 2, 4, 8, 16, 32, 64, and 128.

High Speed TB clock prescaler divider
See the discussion of the TB clock prescaler divider above
for an explanation of this value’s role in setting the speed of the
Time-base Clock. Choices are 1, 2, 4, 6, 8, 10, 12, and 14.

7-65

C280x ePWM

ePWMA output and ePWMB output panes

The ePWMA output pane and ePWMB output pane include the
same settings, although the default value is different in some cases,
as noted below.

7-66

C280x ePWM

Enable ePWMxA
Enable ePWMxB

Select to enable the ePWMA and/or ePWMB output signals for the
module that is currently chosen in the General pane. By default,
both Enable ePWMxA and Enable ePWMxB are selected for
each of the six ePWM modules you can select in the General pane.

7-67

C280x ePWM

Use deadband for ePWMxA
Use deadband for ePWMxB

Enables a deadband area of no signal overlap between pairs of
ePWM output signals. In all cases, this check box is cleared by
default.

Duty cycle units
Specifies the units in which the Duty cycle value is expressed:
Percentages (the default) or Clock cycles.

Duty cycle source
Specifies the source from which the pulse width is to be obtained.
Choose Specify via dialog (the default) to enter a value in the
Duty cycle field, or Input port to use a value from the input
port.

Duty cycle
This field appears only when you choose Specify via dialog in
Duty cycle source. Enter a value that specifies the pulse width,
in the units specified in Duty cycle units.

Action when counter=ZERO
Action when counter=PRD
Action when counter=CMPA on CAU
Action when counter=CMPA on CAD
Action when counter=CMPB on CBU
Action when counter=CMPB on CBD

These settings, along with the other remaining settings in the
ePWMA output and ePWMB output panes, determine the
behavior of the Action Qualifier (AQ) submodule. Based on these
settings, the AQ module decides which events are converted into
various action types, thereby producing the required switched
waveforms of the ePWMxA and ePWMxB output signals.

For each of these four fields, the available choices are Do nothing,
Clear, Set, and Toggle.

7-68

C280x ePWM

The default values for these fields vary between the ePWMA
output and ePWMB output panes. The following table shows
the defaults for each of these panes:

Action when
counter=...

ePWMA output
pane

ePWMB output
pane

ZERO Clear Do nothing

PRD Do nothing Set

CMPA on CAU Set Do nothing

CMPA on CAD Do nothing Do nothing

CMPB on CBU Do nothing Clear

CMPB on CBD Do nothing Do nothing

For a detailed discussion of the AQ submodule, see the
TMS320x280x Enhanced Pulse Width Modulator (ePWM) Module
Reference Guide (SPRU791), available on the Texas Instruments
Web site.

Compare value reload condition
Enable continuous S/W force input port
Continuous S/W force logic
Reload condition for S/W force

These four settings determine how the AQ module handles the
S/W force event, an asynchronous event initiated by software
(CPU) via control register bits.

Compare value reload condition determines if and when the
Action-qualifier S/W Force Register is reloaded from a shadow
register. Choices are Load on CTR=Zero (the default), Load on
CTR=PRD, Load on either, and Freeze.

Enable continuous S/W force input port specifies the source
from which the control logic is obtained. This check box is cleared

7-69

C280x ePWM

by default. Select this check box to obtain the control logic from
the input port

Continuous S/W force logic specifies what type of S/W force
logic to use if the continuous S/W force input port is not enabled.
Choices are Forcing Disable (the default), Forcing Low, and
Forcing High.

Reload condition for S/W force — Choices are Zero (the
default), Period, Either period or zero, and Immediate.

Deadband unit pane

The Deadband unit pane lets you specify parameters for the
Dead-Band Generator (DB) submodule. Since using the DB submodule
is not required for generating a deadband in PWM output, this pane is
empty by default. The elements of the Deadband unit pane shown in
the following image appear only when you select either or both of the
Use deadband for ePWMxA or Use deadband for ePWMxB check
boxes in the ePWMA output or ePWMB output panes.

7-70

C280x ePWM

Deadband polarity
Configures the deadband polarity as AH (active high, the default),
AL (active low), AHC (active high complementary), or ALC (active
low complementary).

Deadband period source
Specifies the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to enter explicit values,
or Input port to use a value from the input port.

7-71

C280x ePWM

RED deadband period
This field appears only when Use deadband for ePWMxA is
selected in the ePWMA output pane. Enter a value from 0 to
1023 to specify a rising edge delay.

FED deadband period
This field appears only when Use deadband for ePWMxB is
selected in the ePWMB output pane. Enter a value from 0 to
1023 to specify a falling edge delay.

ADC control pane

The ADC control pane lets you specify conditions under which ADC
start of conversion is triggered by either or both of the ePWMA and
ePWMB outputs.

7-72

C280x ePWM

Enable ADC start module A
Select to allow ePWMA to trigger ADC start of conversion. This
check box is cleared by default.

Number of event for SOCA to be generated
This field appears only when you check the Enable ADC start
module A check box. Specify how often you want ADC start of
conversion to be triggered. First event triggers ADC start of
conversion with every event, Second event triggers ADC start
of conversion with every second event, and Third event triggers
ADC start of conversion with every third event.

7-73

C280x ePWM

Module A counter match event condition
This field also appears only when you select the Enable ADC
start module A check box. Specify the counter match condition
that will trigger an ADC start of conversion event. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB.

Enable ADC start module B
Select to allow ePWMB to trigger ADC start of conversion. This
check box is cleared by default.

Number of event for SOCB to be generated
This field appears only when you select the Enable ADC start
module B check box. Specify how often you want ADC start of
conversion to be triggered. First event triggers ADC start of
conversion with every event, Second event triggers ADC start
of conversion with every second event, and Third event triggers
ADC start of conversion with every third event.

Module B counter match event condition
This field also appears only when you select the Enable ADC
start module B check box. Specify the counter match condition
that will trigger an ADC start of conversion event. Choices
are CTR=Zero (the default), CTR=PRD, CTRU=CMPA, CTRD=CMPA,
CTRU=CMPB, and CTRD=CMPB.

PWM chopper control pane

The PWM chopper control pane lets you specify parameters for
the PWM-Chopper (PC) submodule. The PC submodule allows
a high-frequency carrier signal to modulate the PWM waveform
generated by the AQ and DB modules.

7-74

C280x ePWM

Chopper module enable
Select to enable the chopper module. Use of the chopper module is
optional, so this check box is cleared by default.

Chopper frequency divider
Chopper frequency divider is a prescaler that is used to set
the frequency of the chopper clock. The system clock speed is
divided by this value to determine the chopper clock frequency.
Choose an integer value from 1 to8.

7-75

C280x ePWM

Chopper clock cycles width of first pulse
Choose an integer value from 1 to 16 to set the width of the first
pulse. Use this feature to provide a high-energy first pulse to
ensure hard and fast power switch turn on.

Chopper pulse duty cycle
The duty cycles of the second and subsequent pulses are also
programmable. Choices are 12.5%, 25%, 37.5%, 50%, 62.5%, 75%,
and 87.5%.

Trip Zone unit pane

The Trip Zone unit pane lets you specify parameters for the Trip-zone
(TZ) submodule. Each ePWM module is connected to six TZ signals
(TZ1 to TZ6) that are sourced from the GPIO MUX. These signals
indicate external fault or trip conditions. Use the settings in this pane
to program the EPWM outputs to respond when faults occur.

7-76

C280x ePWM

Trip zone source
Specifies the source from which the control logic is to be obtained.
Choose Specify via dialog (the default) to explicitly enable
Trip-zone signals, or Input port to use information from the
input port.

7-77

C280x ePWM

Enable One-Shot TZ1
Enable One-Shot TZ2
Enable One-Shot TZ3
Enable One-Shot TZ4
Enable One-Shot TZ5
Enable One-Shot TZ6

Select any of these check boxes to enable the corresponding
Trip-zone signal in One-Shot Mode. In this mode, when the trip
event is active, the respective action on the EPWMxA/B output
is carried out immediately and is latched. The condition remains
latched and can only be cleared by the user under software control.

Enable Cyclic TZ1
Enable Cyclic TZ2
Enable Cyclic TZ3
Enable Cyclic TZ4
Enable Cyclic TZ5
Enable Cyclic TZ6

Select any of these check boxes to enable the corresponding
Trip-zone signal in Cycle-by-Cycle Mode. In this mode, when the
trip event is active, the respective action on the EPWMxA/B output
is carried out immediately and is latched. In Cycle-by-Cycle Mode,
the condition is automatically cleared when the PWM Counter
reaches zero. Therefore, in Cycle-by-Cycle Mode, the trip event is
cleared or reset every PWM cycle.

ePWMxA forced to
ePWMxB forced to

Upon a fault condition, the ePWMxA and/or ePWMxB output can
be overridden and forced to one of the following: No action (the
default), High, Low, or Hi-Z(High Impedance).

See Also C280x ADC

7-78

C280x eQEP

Purpose Quadrature encoder pulse circuit

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The enhanced quadrature encoder pulse (eQEP) module is used for
direct interface with a linear or rotary incremental encoder to get
position, direction, and speed information from a rotating machine for
use in a high-performance motion and position-control system.

Dialog
Box

General pane

7-79

C280x eQEP

Module
As many as two eQEP units are allowed on a single C280x-based
board. Choose eQEP1 (the default) or eQEP2.

Position counter mode
The input signals QEPA and QEPB are processed by the
Quadrature Decoder Unit (QDU) to produce clock (QCLK) and
direction (QDIR) signals. Choose the position counter mode
appropriate to the way the input to the eQEP module is encoded.
Choices are Quadrature-count (the default), Direction-count,
Up-count, and Down-count.

Positive rotation
This field appears only when you choose Quadrature-count in
Position counter mode. Choose the direction that represents
positive rotation: Clockwise (the default) or Counterclockwise.

External clock rate
This field appears only when you choose Direction-count,
Up-count, or Down-count in Position counter mode. In these
cases, you can program clock generation to the position counter to
occur on both rising and falling edges of the QEPA input or on the
rising edge only. The effect of choosing the former is increasing
the measurement resolution by a factor of 2. Choices are 2x
resolution: Count the rising/falling edge (the default) or
1x resolution: Count the rising edge only.

Quadrature phase error flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the QEPA and QEPB signals fall out
of their normal state of being 90 degrees out of phase.

Quadrature direction flag output port
This check box appears only when you choose Quadrature-count
in Position counter mode. Select this check box if you want to
generate an interrupt when the direction of counting is reversed
by swapping the QEPA and QEPB input signals.

7-80

C280x eQEP

Invert input QEPxA polarity
Invert input QEPxB polarity
Invert input QEPxI polarity
Invert input QEPxS polarity

Select any of these check boxes to invert the polarity of the
respective eQEP input signal.

Index pulse gating option
Select this check box to enable gating of the index pulse.

Sample time
Enter the sample time in seconds.

7-81

C280x eQEP

Position counter pane

Output position counter
This check box is selected by default. Leave it selected to output
the position counter signal PCSOUT from the position counter
and control unit (PCCU).

Maximum position counter value
Enter a maximum value for the position counter. Enter a value
from 0 to 4294967295. The default is the maximum allowed value
of 4294967295.

7-82

C280x eQEP

Enable set to init value on index event
Select to set the position counter to its initialization value on an
index event. This check box is cleared by default.

Set to init value on index event
This field appears only when Enable set to init value on
index event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the index input.

Enable set to init value on strobe event
Select to set the position counter to its initialization value on a
strobe event. This check box is cleared by default.

Set to init value on strobe event
This field appears only when Enable set to init value on
strobe event is selected. Choose to set the position counter to
its initialization value on the Rising edge (the default) or the
Falling edge of the strobe input.

Enable software initialization
Select to allow the position counter to be set to its initialization
value via software. This check box is cleared by default.

Software initialization source
This field appears only when Enable software initialization is
selected. Choose Set to init value at start up (the default)
or Input port to receive the control logic through the input port.

Initialization value
This field appears only when Enable set to init value on
index event, Enable set to init value on strobe event, or
Enable software initialization check box is selected. Enter the
initialization value for the position counter. Enter a value from 0
to 4294967295. The default is 2147483648.

Position counter reset mode
Choose a position counter reset mode, depending on the nature
of the system the eQEP module is working with: Reset on an
index event (the default), Reset on the maximum position,

7-83

C280x eQEP

Reset on the first index event, or Reset on a time unit
event.

Output position counter error flag
This check box appears only when Position counter reset mode
is set to Reset on an index event. Select this check box to
output the position counter error flag on error.

Output latch position counter on index event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP index input can be configured
to latch the position counter (QPOSCNT) into QPOSILAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each index event.

Index event latch of position counter
This field appears only when the Output latch position
counter on index event check box is selected. Choose one of the
following events to configure the eQEP position counter to latch
on that event: Rising edge, Falling edge, or Software index
marker via input port.

Output latch position counter on strobe event
This check box appears only when Position counter reset mode
is set to Reset on the maximum position or Reset on the
first index event. The eQEP strobe input can be configured
to latch the position counter (QPOSCNT) into QPOSSLAT on
occurrence of a definite event on this pin. Select this check box to
latch the position counter on each strobe event.

Strobe event of latched position counter
This field appears only when the Output latch position counter
on strobe event check box is selected. Choose Rising edge to
latch on the rising edge of the strobe event input, or Depending
on direction to latch on the rising edge in the forward direction
and the falling edge in the reverse direction.

7-84

C280x eQEP

Speed calculation pane

Enable QEP capture
The eQEP peripheral includes an integrated edge capture unit
to measure the elapsed time between the unit position events.
Check this check box to enable the edge capture unit. This check
box is cleared by default.

Output capture timer
Select this check box to output the capture timer into the capture
period register. This check box is cleared by default.

7-85

C280x eQEP

Output capture period timer
Select this check box to output the capture period into the capture
period register. This check box is cleared by default.

eQEP capture timer prescaler
The eQEP capture timer runs from prescaled SYSCLKOUT. The
capture timer period is the value of SYSCLKOUT divided by
the value you choose in this field. Choices are 1, 2, 4, 8, 16, 32,
64, and 128 (the default).

Unit position event prescaler
The timing of the unit position event is determined by prescaling
the quadrature-clock (QCLK). QCLK is divided by the value you
choose in this popup. Choices are 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048 (the default).

Enable and output overflow error flag
Select this check box to enable and output the eQEP overflow
error flag in the event of capture timer overflow between unit
position events.

Enable and output direction change error flag
Select this check box to enable and output the direction change
error flag.

Capture timer and position
Choose the event that triggers the latching of the capture timer
and capture period register: On position counter read (the
default) or On unit time-out event.

Unit timer period
This field appears only when you choose On unit time-out
event in Capture timer and position. Enter a value for the
unit timer period from 0 to 4294967295. The default is 100000000.

Output capture timer latched value
Select this check box to output the capture timer latched value
from the QCTMRLAT register.

7-86

C280x eQEP

Output capture timer period latched value
Select this check box to output the capture timer period latched
value from the QCPRDLAT register.

Output position counter latched value
Select this check box to output the position counter latched value
from the QPOSLAT register.

Compare output pane

7-87

C280x eQEP

Enable position-compare sync signal output
The eQEP peripheral includes a position-compare unit that is
used to generate the position-compare sync signal on compare
match between the position counter register (QPOSCNT) and the
position-compare register (QPOSCMP). Select this check box to
enable the position-compare sync signal output. This check box is
cleared by default.

Sync output pin selection
Choose which pin is used for the sync signal output. Choices are
Index pin is used for sync output (the default) and Strobe
pin is used for sync output.

Compare value source
Choose the source of the value to use in the position comparison.
Choose Specify via dialog (the default) to specify a fixed value
or Input port to read the value from the input port.

Position compare shadow load mode
This field lets you enable or disable shadow mode for use in
generating the position-compare sync signal (shadow mode is
enabled by default). When shadow mode is enabled, you can also
choose an event to trigger the loading of the shadow register value
into the active register.

Choose Disable shadow mode to disable shadow mode. Choose
Load on QPOSCNT=0 (the default) to load on the position-counter
zero event. Choose Load on QPOSCNT=QPOSCMP to load on compare
match.

Position compare value
This field appears only when you choose Specify via dialog in
Compare value source. Enter a value from 0 to 4294967295.
The default is 4294967295. This value is loaded into the
position-compare register (QPOSCMP).

7-88

C280x eQEP

Sync output pulse width
The pulse stretcher logic in the position-compare unit generates
a programmable position-compare sync pulse output on the
position-compare match.

Enter a value from 1 to 4096 to determine the pulse width of the
position-compare sync output signal. The default is 1.

Polarity of sync output
Choose a value to determine the polarity of the sync output signal:
Active high (the default) or Active low.

7-89

C280x eQEP

Watchdog unit pane

Enable watchdog time out flag via output port
The eQEP peripheral contains a watchdog timer that monitors the
quadrature-clock to indicate proper operation of the motion-control
system. Select this check box to enable the watchdog time out flag.

Watchdog timer
Enter the time-out value for the watchdog timer. Enter a value
from 0 to 65535 (the default).

7-90

C280x eQEP

Signal data types pane

The image above shows the default condition of the Signal data types
pane. Choosing any of a number of options in other panes of the C280x
eQEP dialog box causes a corresponding popup to appear in the Signal
data types pane.

The following table summarizes the options for which you can set the
data type in the Signal data types pane:

7-91

C280x eQEP

Pane Option

Quadrature phase error flag output portGeneral

Quadrature direction flag output port

Output position counter (selected by default)

Output position counter error flag

Output latch position counter on index event

Position
counter

Output latch position counter on strobe event

Output capture timer

Output capture period timer

Enable and output overflow error flag

Enable and output direction change error flag

Output capture timer latched value

Output capture timer period latched value

Speed
calculation

Output position counter latched value

Watchdog unit Enable watchdog time out flag via output port

The fields that appear on the Signal data types pane are named
similarly to these options. For example, Position counter value
data type on the Signal data types pane corresponds to the Output
position counter option on the Position counter pane.

For all data type fields, valid data types are auto, double, single, int8,
uint8, int16, uint16, int32, uint32, and boolean.

7-92

C280x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in nonreturn-to-zero (NRZ) format. This block configures the C280x
DSP target to receive scalar or vector data from the COM port via the
C280x target’s COM port.

Note For any given model, you can have only one C280x SCI Receive
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2808
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-93

C280x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

7-94

C280x SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited
from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the c280x SCI Receive block. This value is
used, for example, if a connection time-out occurs and the When

7-95

C280x SCI Receive

connection timeout field is set to “Output the last received
value”, but nothing yet has been received.

When connection timeout
Specifies what to output if a connection time-out occurs. If
“Output the last received value” is selected, the last received value
is what is output, unless none has been received yet, in which case
the Initial output is considered the last received value.

If “Output customized value” is selected, a field for specifying a
custom value is added to the dialog box (as shown in the following
figure).

7-96

C280x SCI Receive

7-97

C280x SCI Receive

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-13 for a discussion
of block placement and other necessary settings.

Output receiving status
When this field is checked, the c280x SCI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and not
blocking, it checks the FIFO to see if there is data to read. If data
is present, it reads and outputs. If no data is present, it continues.
If the block is in polling mode and blocking, it waits until data is
available to read (after data length is reached).

7-98

C280x SCI Receive

References Detailed information on the SCI module is in the TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C280x SCI Transmit, C280x Hardware Interrupt

7-99

C280x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x SCI Transmit block transmits scalar or vector data in int8
or uint8 format from the C280x target’s COM ports in nonreturn-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
The data type of the input port must be one of the following: single,
int8, uint8, int16, uint16, int32, uint32. If no data type is specified, the
default data type is uint8.

Note For any given model, you can have only one C280x SCI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the Target
Preferences block. You should verify that these settings are correct
for your application.

7-100

C280x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count.

7-101

C280x SCI Transmit

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not sent nor are they
included in the total byte count.

Enable transmit FIFO interrupt
If checked, an interrupt is posted when FIFO is full, allowing the
subsystem to take some sort of action.

References Detailed information on the SCI module is in the TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C280x SCI Receive, C280x Hardware Interrupt

7-102

C280x SPI Receive

Purpose Receive data via the serial peripheral interface (SPI) on the target

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

Note For any given model, you can have only one C280x SPI Receive
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SPI-specific settings are in the DSPBoard section of the Target
Preferences block. You should verify that these settings are correct
for your application.

7-103

C280x SPI Receive

Dialog
Box

Select module
SPI module (A-D) to be used for communications.

Data length
Specifies how many uint16s are expected to be received. Select
1 through 16.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

7-104

C280x SPI Receive

Output receive error status
When this field is checked, the c280x SPI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: Data loss occurred, (Overrun: when FIFO disabled, Overflow
when FIFO enabled)

• 2: Data not ready, a time out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-13 for a discussion
of block placement and other necessary settings.

See Also C280x SPI Transmit, C280x Hardware Interrupt

7-105

C280x SPI Transmit

Purpose Transmit data via the serial peripheral interface (SPI) to the host

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description The C280x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If
no data type is specified, the default data type is uint16.

Note For any given model, you can have only one C280x SPI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2808 eZdsp target preferences block.

Many SPI-specific settings are in the DSPBoard section of the target
preferences block. You should verify that these settings are correct
for your application.

7-106

C280x SPI Transmit

Dialog
Box

Select module
SPI module (A-D) to be used for communications.

Output transmit error status
When this field is checked, the c280x SPI Transmit block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

7-107

C280x SPI Transmit

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Check this check box to post an asynchronous interrupt when
data is transmitted.

See Also C280x SPI Receive, C280x Hardware Interrupt

7-108

C280x Hardware Interrupt

Purpose Create Interrupt Service Routine to handle hardware interrupts

Library c280xdspchiplib in Embedded Target for TI C2000 DSP

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C280x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered by
events managed by other blocks in the C280x DSP Chip Support Library.

The C280x blocks that can generate an interrupt for asynchronous
processing are

• C280x ADC

• C280x eCAN Receive

• C280x SCI Receive

• C280x SCI Transmit

• C280x SPI Receive

• C280x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

Each interrupt is described by:

7-109

C280x Hardware Interrupt

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

7-110

C280x Hardware Interrupt

C
2

8
0
x

P
er

ip
h
er

a
l

In
te

rr
u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/

C
o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T
(L

P
M

/W
D

)
TI

N
T0

(T
IM

E
R

0)
A

D
C

IN
T

(A
D

C
)

X
IN

T2
X

IN
T1

R
es

er
ve

d
S

EQ
2I

N
T

(A
D

C
)

S
E

Q
1I

N
T

(A
D

C
)

2
R

es
er

ve
d

R
es

er
ve

d
E

P
W

M
6_

TZ
IN

T
(e

P
W

M
6)

E
P

W
M

5_
TZ

IN
T

(e
P

W
M

5)
E

P
W

M
4_

TZ
IN

T
(e

P
W

M
4)

E
P

W
M

3_
TZ

IN
T

(e
P

W
M

3)
E

P
W

M
2_

TZ
IN

T
(e

P
W

M
2)

E
P

W
M

1_
TZ

IN
T

(e
P

W
M

1)

3
R

es
er

ve
d

R
es

er
ve

d
E

P
W

M
6_

IN
T

(e
P

W
M

6)
E

P
W

M
5_

IN
T

(e
P

W
M

5)
E

P
W

M
4_

IN
T

(e
P

W
M

4)
E

P
W

M
3_

IN
T

(e
P

W
M

3)
E

P
W

M
2_

IN
T

(e
P

W
M

2)
E

P
W

M
1_

IN
T

(e
P

W
M

1)

4
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
E

C
A

P
4_

IN
T

(e
C

A
P

4)
E

C
AP

3_
IN

T
(e

C
A

P3
)

E
C

A
P

2_
IN

T
(e

C
A

P
2)

E
C

AP
1_

IN
T

(e
C

A
P1

)

5
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
E

Q
E

P
2_

IN
T

(e
Q

E
P

2)
E

Q
E

P
1_

IN
T

(e
Q

E
P

1)

6
S

P
IT

X
IN

TD
(S

PI
-D

)
S

P
IR

X
IN

TD
(S

P
I-D

)
S

P
IT

X
IN

TC
(S

P
I-C

)
S

P
IR

X
IN

TC
(S

PI
-C

)
S

P
IT

X
IN

TB
(S

P
I-B

)
S

P
IR

X
IN

TB
(S

P
I-B

)
S

P
IT

X
IN

TA
(S

P
I-A

)
S

P
IR

XI
N

TA
(S

P
I-A

)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
I2

C
IN

T1
A

(I2
C

-A
)

I2
C

IN
T2

A
(I2

C
-A

)

9
E

C
A

N
1I

N
TB

(C
A

N
-B

)
E

C
A

N
0I

N
TB

(C
A

N
-B

)
E

C
A

N
1I

N
TA

(C
A

N
-A

)
E

C
A

N
0I

N
TA

(C
A

N
-A

)
S

C
IT

X
IN

TB
(S

C
I-B

)
S

C
IR

X
IN

TB
(S

C
I-B

)
SC

IT
X

IN
TA

(S
C

I-A
)

S
C

IR
X

IN
TA

(S
C

I-A
)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

7-111

C280x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority value
for each asynchronously triggered task must be less than 40 in order for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

7-112

C280x Hardware Interrupt

See the table of C280x Peripheral Interrupt Vector Values on page
7-111 for a mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C280x Peripheral Interrupt Vector Values on page
7-111 for a mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
7-109 for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
7-109 for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

References Detailed information interrupt processing is in the TMS320x280x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRU712B, available at the Texas Instruments Web site.

See Also Idle Task

7-113

C281x ADC

Purpose Analog-to-digital converter (ADC)

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x ADC block configures the C281x ADC to perform
analog-to-digital conversion of signals connected to the selected ADC
input pins. The ADC block outputs digital values representing the
analog input signal and stores the converted values in the result
register of your digital signal processor. You use this block to capture
and digitize analog signals from external sources such as signal
generators, frequency generators, or audio devices.

Triggering

The C281x ADC trigger mode depends on the internal setting of the
source start-of-conversion (SOC) signal. In unsynchronized mode the
ADC is usually triggered by software at the sample time intervals
specified in the ADC block. For more information on configuring the
specific parameters for this mode, see “Configuring Acquisition Window
Width for ADC Blocks”.

In synchronized mode, the Event (EV) Manager associated with the
same module as the ADC triggers the ADC. In this case, the ADC
is synchronized with the pulse width modulator (PWM) waveforms
generated by the same EV unit via the ADC Start Event signal
setting. The ADC Start Event is set in the C281x PWM block. See that
block for information on the settings.

Note The ADC cannot be synchronized with the PWM if the ADC is in
cascaded mode (see below).

Output

The output of the C281x ADC is a vector of uint16 values. The output
values are in the range 0 to 4095 because the C281x ADC is 12-bit
converter.

7-114

C281x ADC

Modes

The C281x ADC block supports ADC operation in dual and cascaded
modes. In dual mode, either module A or module B can be used for the
ADC block, and two ADC blocks are allowed in the model. In cascaded
mode, both module A and module B are used for a single ADC block.

Dialog
Box

ADC Control pane

Module
Specifies which DSP module to use:

• A — Displays the ADC channels in module A (ADCINA0
through ADCINA7).

• B — Displays the ADC channels in module B (ADCINB0
through ADCINB7).

7-115

C281x ADC

• A and B — Displays the ADC channels in both modules A
and B (ADCINA0 through ADCINA7 and ADCINB0 through
ADCINB7)

Then, use the check boxes to select the desired ADC channels.

Conversion mode
Type of sampling to use for the signals:

• Sequential — Samples the selected channels sequentially

• Simultaneous — Samples the corresponding channels of
modules A and B at the same time

Start of conversion
Type of signal that triggers conversions to begin:

• Software — Signal from software

• EVA — Signal from Event Manager A

• EVB — Signal from Event Manager B

• External — Signal from external hardware

Sample time
Time in seconds between consecutive sets of samples that are
converted for the selected ADC channel(s). This is the rate at
which values are read from the result registers. See “Scheduling
and Timing” on page 1-11 for more information on timing. To
execute this block asynchronously, set Sample Time to -1, check
the Post interrupt at the end of conversion box, and refer to
“Asynchronous Interrupt Processing” on page 1-13 for a discussion
of block placement and other necessary settings.

To set different sample times for different groups of ADC channels,
you must add separate C281x ADC blocks to your model and set
the desired sample times for each block.

Data type
Date type of the output data. Valid data types are auto, double,
single, int8, uint8, int16, uint16, int32, or uint32.

7-116

C281x ADC

Post interrupt at the end of conversion
Check this check box to post an asynchronous interrupt at the
end of each conversion. Note that the interrupt is always posted
at the end of conversion.

Input Channels pane

Number of conversions
Number of ADC channels to use for analog-to-digital conversions.

Conversion no.
Specific ADC channel to associate with each conversion number.

In oversampling mode, a signal at a given ADC channel can be
sampled multiple times during a single conversion sequence.
To oversample, specify the same channel for more than one
conversion. Converted samples are output as a single vector.

7-117

C281x ADC

Use multiple output ports
If more than one ADC channel is used for conversion, you can use
separate ports for each output and show the output ports on the
block. If you use more than one channel and do not use multiple
output ports, the data is output in a single vector.

See Also C281x PWM, C281x Hardware Interrupt

7-118

C281x CAP

Purpose Receive and log capture input pin transitions

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x CAP block sets parameters for the capture units (CAPs) of
the Event Manager (EV) module. The capture units log transitions
detected on the capture unit pins by recording the times of these
transitions into a two-level deep FIFO stack. The capture unit pins
can be set to detect rising edge, falling edge, either type of transition,
or no transition.

The C281x chip has six capture units — three associated with each
EV module. Capture units 1, 2, and 3 are associated with EVA and
capture units 4, 5, and 6 are associated with EVB. Each capture unit is
associated with a capture input pin.

Note You can have up to two C281x CAP blocks in any one model—one
block for each EV module.

Each group of EV module capture units can use one of two
general-purpose (GP) timers on the target board. EVA capture units
can use GP timer 1 or 2. EVB capture units can use GP timer 3 or 4.
When a transition occurs, the value of the selected timer is stored in the
two-level deep FIFO stack.

Outputs

This block has up to two outputs: a cnt (count) output and an optional,
FIFO status flag output. The cnt output increments each time a
transition of the selected type occurs. The status flag outputs are

• 0 — The FIFO is empty. Either no captures have occurred or the
previously stored capture(s) have been read from the stack. (The
binary version of this flag is 00.)

• 1 — The FIFO has one entry in the top register of the stack. (The
binary version of this flag is 01.)

7-119

C281x CAP

• 2 — The FIFO has two entries in the stack registers. (The binary
version of this flag is 10.)

• 3 — The FIFO has two entries in the stack registers and one or more
captured values have been lost. This occurs because another capture
occurred before the FIFO stack was read. The new value is placed in
the bottom register. The bottom register value is pushed to the top of
the stack and the top value is pushed out of the stack. (The binary
version of this flag is 11.)

Dialog
Box

Data Format pane

Module
Select the Event Manager (EV) module to use:

• A — Use CAPs 1, 2, and 3.

• B — Use CAPs 4, 5, and 6.

Output overrun status flag
Select to output the status of the elements in the FIFO. The data
type of the status flag is uint16.

7-120

C281x CAP

Send data format
The type of data to output:

• Send 2 elements (FIFO Buffer) — Sends the latest two
values. The output is updated when there are two elements
in the FIFO, which is indicated by bit 13 or 11 or 9 being
sent (CAP x FIFO). If the CAP is polled when fewer than two
elements are captures, old values are repeated. The CAP
registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output
at index 0.

c The new top value of the FIFO (the previously stored bottom
stack value) is read and stored in the output at index 1.

• Send 1 element (oldest) — Sends the older of the two most
recent values. The output is updated when there is at least
one element in the FIFO, which is indicated by any of the bits
13:12, or 11:10, or 9:8 being sent. The CAP registers are read
as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b The top value of the FIFO is read and stored in the output.

• Send 1 element (latest) — Sends the most recent value.
The output is updated when there is at least one element in the
FIFO, which is indicated by any of the bits 13:12, or 11:10, or
9:8 being sent. The CAP registers are read as follows:

a The CAP x FIFO status bits are read and the value is stored
in the status flag.

b If there are two entries in the FIFO, the bottom value is read
and stored in the output. If there is only one entry in the
FIFO, the top value is read and stored in the output.

7-121

C281x CAP

Sample time
Time between outputs from the FIFO. If new data is not available,
the previous data is sent.

Data type
Data type of the output data. Available options are auto, double,
single, int8, uint8, int16, uint16, int32, uint32, and boolean.
The auto option uses the data type of a connected block that
outputs data to this block. If this block does not receive any input,
auto sets the data type to double.

CAP# pane

The CAP# panes set parameters for individual CAPs. The particular
CAP affected by a CAP# pane depends on the EV module you selected:

• CAP1 controls CAP 1 or CAP 4, for EV module A or B, respectively.

• CAP2 controls CAP 2 or CAP 5, for EV module A or B, respectively.

• CAP3 controls CAP 3 or CAP 6, for EV module A or B, respectively.

7-122

C281x CAP

Enable CAP#
Select to use the specified capture unit pin.

Edge Detection
Type of transition detection to use for this CAP. Available types are
Rising Edge, Falling Edge, Both Edges, and No transition.

Time Base
The target board GP timer to use. CAPs 1, 2, and 3 can use
Timer 1 or Timer 2. CAPs 4, 5, and 6 can use Timer 3 or
Timer 4.

Scaling
Clock divider factor by which to prescale the selected GP timer
to produce the desired timer counting rate. Available options are
none, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, and 1/128. The resulting
rate for each option is shown below.

Scaling Resulting Rate (µs)

none 0.01334

1/2 0.02668

1/4 0.05336

1/8 0.10672

1/16 0.21344

1/32 0.42688

1/64 0.85376

1/128 1.70752

Note The above rates assume a 75 MHz input clock.

Post interrupt on CAP#
Check this check box to post an asynchronous interrupt on CAP#.

7-123

C281x CAP

See Also

C281x Hardware Interrupt

7-124

C281x eCAN Receive

Purpose Enhanced Control Area Network receive mailbox

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x enhanced Control Area Network (eCAN) Receive block
generates source code for receiving eCAN messages through an
eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C281x supports eCAN data frames in standard or
extended format.

The C281x eCAN Receive block has up to two and, optionally, three
output ports.

• The first output port is the function call port, and a function call
subsystem should be connected to this port. When a new message is
received, this subsystem is executed.

• The second output port is the message data port. The received data is
output in the form of a vector of elements of the selected data type.
The length of the vector is always 8 bytes.

• The third output port is optional and appears only if Output
message length is selected.

7-125

C281x eCAN Receive

Dialog
Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length
29 bits for extended frame size in decimal, binary, or hex. If in
binary or hex, use bin2dec(' ') or hex2dec(' '), respectively,
to convert the entry. The message identifier is associated with a
receive mailbox. Only messages that match the mailbox message
identifier are accepted into it.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

7-126

C281x eCAN Receive

Sample time
Frequency with which the mailbox is polled to determine if a new
message has been received. A new message causes a function call
to be emitted from the mailbox. If you want to update the message
output only when a new message arrives, then the block needs to
be executed asynchronously. To execute this block asynchronously,
set Sample Time to -1, check the Post interrupt when
message is received box, and refer to “Asynchronous Interrupt
Processing” on page 1-13 for a discussion of block placement and
other necessary settings.

Note For information about setting the timing parameters of
the CAN module see “Configuring Timing Parameters for CAN
Blocks”.

Data type
Type of data in the data vector. The length of the vector for the
received message is at most 8 bytes. If the message is less than 8
bytes, the data buffer bytes are right-aligned in the output. Only
uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are allowed. The data are unpacked as follows
using the data buffer, which is 8 bytes.

For uint16 data,

Output[0] = data_buffer[1..0];
Output[1] = data_buffer[3..2];
Output[2] = data_buffer[5..4];
Output[3] = data_buffer[7..6];

For uint32 data,

Output[0] = data_buffer[3..0];
Output[1] = data_buffer[7..4];

7-127

C281x eCAN Receive

For example, if the received message has two bytes:

data_buffer[0] = 0x21
data_buffer[1] = 0x43

then the uint16 output would be:

Output[0] = 0x4321
Output[1] = 0x0000
Output[2] = 0x0000
Output[3] = 0x0000

Output message length
Select to output the message length in bytes to the third output
port. If not selected, the block has only two output ports.

Post interrupt when message is received
Check this check box to post an asynchronous interrupt when a
message is received.

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Transmit, C281x Hardware Interrupt

7-128

C281x eCAN Transmit

Purpose Enhanced Control Area Network transmit mailbox

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x enhanced Control Area Network (eCAN) Transmit block
generates source code for transmitting eCAN messages through an
eCAN mailbox. The eCAN module on the DSP chip provides serial
communication capability and has 32 mailboxes configurable for receive
or transmit. The C28x supports eCAN data frames in standard or
extended format.

Data Vectors

The length of the vector for each transmitted mailbox message is 8
bytes. Input data are always right-aligned in the message data buffer.
Only uint16 (vector length = 4 elements) or uint32 (vector length = 8
elements) data are accepted. The following examples show how the
different types of input data are aligned in the data buffer

For input of type uint32,

inputdata [0] = 0x12345678

the data buffer is:

data buffer[0] = 0x78
data buffer[1] = 0x56
data buffer[2] = 0x34
data buffer[3] = 0x12
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16,

inputdata [0] = 0x1234

the data buffer is:

7-129

C281x eCAN Transmit

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x00
data buffer[3] = 0x00
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

For input of type uint16[2], which is a two-element vector,

inputdata [0] = 0x1234
inputdata [1] = 0x5678

the data buffer is:

data buffer[0] = 0x34
data buffer[1] = 0x12
data buffer[2] = 0x78
data buffer[3] = 0x56
data buffer[4] = 0x00
data buffer[5] = 0x00
data buffer[6] = 0x00
data buffer[7] = 0x00

7-130

C281x eCAN Transmit

Dialog
Box

Mailbox number
Unique number between 0 and 15 for standard or between 0 and
31 for enhanced CAN mode. It refers to a mailbox area in RAM.
In standard mode, the mailbox number determines priority.

Message identifier
Identifier of length 11 bits for standard frame size or length 29
bits for extended frame size in decimal, binary, or hex. If in binary
or hex, use bin2dec(' ') or hex2dec(' '), respectively, to
convert the entry. The message identifier is coded into a message
that is sent to the CAN bus.

Message type
Select Standard (11-bit identifier) or Extended (29-bit
identifier).

Enable blocking mode
If selected, the CAN block code waits indefinitely for a transmit
(XMT) acknowledge. If cleared, the CAN block code does not wait
for a transmit (XMT) acknowledge, which is useful when the
hardware might fail to acknowledge transmissions.

7-131

C281x eCAN Transmit

Note For information about setting the timing parameters of the CAN
module see “Configuring Timing Parameters for CAN Blocks”.

References Detailed information on the eCAN module is in the TMS320F28x DSP
Enhanced Control Area Network (eCAN) Reference Guide, Literature
Number SPRU074A, available at the Texas Instruments Web site.

See Also C281x eCAN Receive

7-132

C281x GPIO Digital Input

Purpose General-purpose I/O pins for digital input

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital input. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Dialog
Box

7-133

C281x GPIO Digital Input

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable for
digital input. (Note that there is no GPIOPC port on the C281x.)
If you select multiple bits, vector input is expected. Unselected
bits are available for peripheral functionality. Multiple GPIO DI
blocks cannot share the same I/O port.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

7-134

C281x GPIO Digital Input

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

Sample time
Time interval, in seconds, between consecutive input from the
pins.

Data type
Data type of the data to obtain from the GPIO pins. The data is
read as 16-bit integer data and then cast to the selected data type.
Valid data types are auto, double, single, int8, uint8, int16,
uint16, int32, uint32 or boolean.

See Also C281x GPIO Digital Output

7-135

C281x GPIO Digital Output

Purpose General-purpose I/O pins for digital output

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description This block configures the general-purpose I/O (GPIO) registers that
control the GPIO shared pins for digital output. Each I/O port has one
MUX register, which is used to select peripheral operation or digital
I/O operation.

Dialog
Box

7-136

C281x GPIO Digital Output

IO Port
Select the input/output port to use: GPIOPA, GPIOPB, GPIOPD,
GPIOPE, GPIOPF, or GPIOPG and select the I/O Port bits to enable
for digital input. (Note that there is no GPIOPC port on the
C281x.) If you select multiple bits, vector input is expected.
Unselected bits are available for peripheral functionality. Note
that multiple GPIO DO blocks cannot share the same I/O port.

Note The input function of the digital I/O and the input path
to the related peripheral are always enabled on the board. If
you configure a pin as digital I/O, the corresponding peripheral
function cannot be used.

The following tables show the shared pins.

GPIO A MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM1 GPIOA0

1 PWM2 GPIOA1

2 PWM3 GPIOA2

3 PWM4 GPIOA3

4 PWM5 GPIOA4

5 PWM6 GPIOA5

8 QEP1/CAP1 GPIOA8

9 QEP2/CAP2 GPIOA9

10 CAP3 GPIOA10

7-137

C281x GPIO Digital Output

GPIO B MUX

Bit
Peripheral Name
(Bit =1)

GPIO Name
(Bit = 0)

0 PWM7 GPIOB0

1 PWM8 GPIOB1

2 PWM9 GPIOB2

3 PWM10 GPIOB3

4 PWM11 GPIOB4

5 PWM12 GPIOB5

8 QEP3/CAP4 GPIOB8

9 QEP4/CAP5 GPIOB9

10 CAP6 GPIOB10

See Also C281x GPIO Digital Input

7-138

C281x Hardware Interrupt

Purpose Create Interrupt Service Routine to handle hardware interrupts

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description For many systems, an execution scheduling model based on a timer
interrupt is not sufficient to ensure a real-time response to external
events. The C281x Hardware Interrupt block addresses this problem
by allowing for the asynchronous processing of interrupts triggered by
events managed by other blocks in the C281x DSP Chip Support Library.

The C281x blocks that can generate an interrupt for asynchronous
processing are

• C281x ADC

• C281x CAP

• C281x eCAN Receive

• C281x Timer

• C281x SCI Receive

• C281x SCI Transmit

• C281x SPI Receive

• C281x SPI Transmit

Only one Hardware Interrupt block can be used in a model. To handle
multiple interrupts, place a Demux block at the output of the Hardware
Interrupt block to direct function calls to the appropriate function-call
subsystems.

Vectorized Output

The output of this block is a function call. The size of the function call
line equals the number of interrupts the block is set to handle. Each
interrupt is represented by four parameters shown on the dialog box of
the block. These parameters are a set of four vectors of equal length.
Each interrupt is represented by one element from each parameter (four
elements total), one from the same position in each of these vectors.

7-139

C281x Hardware Interrupt

Each interrupt is described by:

• CPU interrupt numbers

• PIE interrupt numbers

• Task priorities

• Preemption flags

So one interrupt is described by a CPU interrupt number, a PIE
interrupt number, a task priority, and a preemption flag.

The CPU and PIE interrupt numbers together uniquely specify a single
interrupt for a single peripheral or peripheral module. The following
table maps CPU and PIE interrupt numbers to these peripheral
interrupts.

7-140

C281x Hardware Interrupt

C
2

8
1

x
P
er

ip
h
er

a
l
In

te
rr

u
p
t

V
ec

to
r

V
a
lu

es

R
o
w

n
u
m

b
er

s
=

C
P
U

va
lu

es
/

C
o
lu

m
n

n
u
m

b
er

s
=

P
IE

va
lu

es

8
7

6
5

4
3

2
1

1
W

A
K

E
IN

T
(L

PM
/W

D
)

TI
N

T0
(T

IM
E

R
0)

A
D

C
IN

T
(A

D
C

)
X

IN
T2

X
IN

T1
R

es
er

ve
d

P
D

P
IN

TB
(E

V-
B

)
P

D
P

IN
TA

(E
V-

A
)

2
R

es
er

ve
d

T1
O

FI
N

T
(E

V-
A

)
T1

U
FI

N
T

(E
V-

A
)

T1
C

IN
T

(E
V-

A
)

T1
P

IN
T

(E
V-

A
)

C
M

P
3I

N
T

(E
V-

A
)

C
M

P
2I

N
T

(E
V-

A
)

C
M

P
1I

N
T

(E
V-

A
)

3
R

es
er

ve
d

C
A

P
IN

T3
(E

V-
A

)
C

A
P

IN
T2

(E
V-

A
)

C
A

P
IN

T1
(E

V-
A

)
T2

O
FI

N
T

(E
V-

A
)

T2
U

FI
N

T
(E

V-
A

)
T2

C
IN

T
(E

V-
A

)
T2

P
IN

T
(E

V-
A

)

4
R

es
er

ve
d

T3
O

FI
N

T
(E

V-
B

)
T3

U
FI

N
T

(E
V-

B
)

T3
C

IN
T

(E
V-

B
)

T3
P

IN
T

(E
V-

B
)

C
M

P
6I

N
T

(E
V-

B
)

C
M

P
5I

N
T

(E
V-

B
)

C
M

P
4I

N
T

(E
V-

B
)

5
R

es
er

ve
d

C
A

P
IN

T6
(E

V-
B

)
C

A
P

IN
T5

(E
V-

B
)

C
A

P
IN

T4
(E

V-
B

)
T4

O
FI

N
T

(E
V-

B
)

T4
U

FI
N

T
(E

V-
B

)
T4

C
IN

T
(E

V-
B

)
T4

P
IN

T
(E

V-
B

)

6
R

es
er

ve
d

R
es

er
ve

d
M

X
IN

T
(M

cB
S

P
)

M
R

IN
T

(M
cB

S
P

)
R

es
er

ve
d

R
es

er
ve

d
S

P
IT

X
IN

TA
(S

P
I)

S
P

IR
X

IN
TA

(S
P

I)

7
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

8
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

9
R

es
er

ve
d

R
es

er
ve

d
E

C
A

N
1I

N
T

(C
A

N
)

E
C

A
N

0I
N

T
(C

A
N

)
S

C
IT

X
IN

TB
(S

C
I-B

)
S

C
IR

X
IN

TB
(S

C
I-B

)
S

C
IT

XI
N

TA
(S

C
I-A

)
S

C
IR

XI
N

TA
(S

C
I-A

)

10
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

11
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

12
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d
R

es
er

ve
d

R
es

er
ve

d

7-141

C281x Hardware Interrupt

The task priority indicates the relative importance tasks associated with
the asynchronous interrupts. If an interrupt triggers a higher-priority
task while a lower-priority task is running, the execution of the
lower-priority task will be suspended while the higher-priority task is
executed. The lowest value represents the highest priority. Note that
the default priority value of the base rate task is 40, so the priority value
for each asynchronously triggered task must be less than 40 in order for
these tasks to actually cause the suspension of the base rate task.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

Dialog
Box

CPU interrupt number(s)
Enter a vector of CPU interrupt numbers for the interrupts you
want to process asynchronously.

7-142

C281x Hardware Interrupt

See the table of C281x Peripheral Interrupt Vector Values on page
7-141 for a mapping of CPU interrupt number to interrupt names.

PIE interrupt number(s)
Enter a vector of PIE interrupt numbers for the interrupts you
want to process asynchronously.

See the table of C281x Peripheral Interrupt Vector Values on page
7-141 for a mapping of CPU interrupt number to interrupt names.

Simulink task priority(s)
Enter a vector of task priorities for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
7-139 for an explanation of task priorities.

Preemption flag(s)
Enter a vector of preemption flags for the interrupts you want to
process asynchronously.

See the discussion of this block’s “Vectorized Output” on page
7-139 for an explanation of preemption flags.

Enable simulation input
Select this check box if you want to be able to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

References Detailed information interrupt processing is in the TMS320x281x DSP
System Control and Interrupts Reference Guide, Literature Number
SPRU078C, available at the Texas Instruments Web site.

See Also C281x Timer, Idle Task

7-143

C281x PWM

Purpose Pulse wave modulators (PWMs)

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description F2812 DSPs include a suite of pulse width modulators (PWMs) used
to generate various signals. This block provides options to set the A
or B module Event Managers to generate the waveforms you require.
The twelve PWMs are configured in six pairs, with three pairs in each
module.

Note All inputs to the C281x PWM block must be scalar values.

7-144

C281x PWM

Dialog
Box

Timer pane

Module
Specifies which target PWM pairs to use:

• A — Displays the PWMs in module A (PWM1/PWM2,
PWM3/PWM4, and PWM5/PWM6).

• B — Displays the PWMs in module B (PWM7/PWM8,
PWM9/PWM10, and PWM11/PWM12).

7-145

C281x PWM

Note PWMs in module A use Event Manager A, Timer 1, and
PWMs in module B use Event Manager B, Timer 3.

Waveform period source
Source from which the waveform period value is obtained. Select
Specify via dialog to enter the value in Waveform period or
select Input port to use a value from the input port.

Waveform period
Period of the PWM waveform measured in clock cycles or in
seconds, as specified in the Waveform period units.

Note The term clock cycles refers to the high-speed peripheral
clock on the F2812 chip. This clock is 75 MHz by default because
the high-speed peripheral clock prescaler is set to 2 (150 MHz/2).

Waveform type
Type of waveform to be generated by the PWM pair. The F2812
PWMs can generate two types of waveforms: Asymmetric and
Symmetric. The following illustration shows the difference
between the two types of waveforms.

7-146

C281x PWM

Waveform period units
Units in which to measure the waveform period. Options are
Clock cycles, which refer to the high-speed peripheral clock on
the F2812 chip (75 MHz), or Seconds. Note that changing these
units changes the Waveform period value and the Duty cycle
value and Duty cycle units selection.

7-147

C281x PWM

Outputs pane

Enable PWM#/PWM#
Check to activate the PWM pair. PWM1/PWM2 are activated
via the Output 1 pane, PWM3/PWM4 are on Output 2, and
PWM5/PWM6 are on Output 3.

Duty cycle source
Source from which the duty cycle for the specific PWM pair is
obtained. Select Specify via dialog to enter the value in Duty
cycle or select Input port to use a value from the input port.

7-148

C281x PWM

Duty cycle
Ratio of the PWM waveform pulse duration to the PWM waveform
period expressed in Duty cycle units.

Duty cycle units
Units for the duty cycle. Valid choices are Clock cycles and
Percentages. Note that changing these units changes the Duty
cycle value, and the Waveform period value and Waveform
period units selection.

Logic pane

7-149

C281x PWM

Control logic source
Source from which the control logic is obtained for all PWMs.
Select Specify via dialog to enter the values in the PWM#
control logic fields or select Input port to use values from the
input port.

PWM# control logic
Control logic trigger for the PWM. Forced high causes the pulse
value to be high. Active high causes the pulse value to go from
low to high and Active low causes the pulse value to go from
high to low. Forced low causes the pulse value to be low.

Deadband pane

7-150

C281x PWM

Use deadband for PWM#/PWM#
Enables a deadband area of no signal overlap at the beginning
of particular PWM pair signals. The following figure shows the
deadband area.

Deadband prescaler
Number of clock cycles, which, when multiplied by the Deadband
period, determines the size of the deadband. Selectable values
are 1, 2, 4, 8, 16, and 32.

Deadband period source
Source from which the deadband period is obtained. Select
Specify via dialog to enter the values in the Deadband
period field or select Input port to use a value, in clock cycles,
from the input port.

Deadband period
Value that, when multiplied by the Deadband prescaler,
determines the size of the deadband. Selectable values are from
1 to 15.

7-151

C281x PWM

ADC Control pane

ADC start event
Controls whether this PWM and ADC associated with the same
EV module are synchronized. Select None for no synchronization
or select an interrupt to generate the source start-of-conversion
(SOC) signal for the associated ADC.

• None — The ADC and PWM are not synchronized. The EV
does not generate an SOC signal and the ADC is triggered by
software (that is, the A/D conversion occurs when the ADC
block is executed in the software).

7-152

C281x PWM

• Underflow interrupt — The EV generates an SOC signal for
the ADC associated with the same EV module when the board’s
General Purpose (GP) timer counter reaches a hexadecimal
value of FFFFh.

• Period interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value in GP
timer matches the value in the period register. The value set in
Waveform period above determines the value in the register.

Note If you select Period interrupt and specify a sampling
time less than the specified (Waveform period)/(Event timer
clock speed), zero-order hold interpolation will occur. (For
example, if you enter 64000 as the waveform period, the period
for the timer is 64000/75 MHz = 8.5333e-004. If you enter a
Sample time in the C281x ADC dialog box that is less than
this result, it will cause zero-order hold interpolation.)

• Compare interrupt — The EV generates an SOC signal for the
ADC associated with the same EV module when the value in the
GP timer matches the value in the compare register. The value
set in Duty cycle above determines the value in the register.

See Also C281x ADC

7-153

C281x QEP

Purpose Quadrature encoder pulse circuit

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description Each F2812 Event Manager has three capture units, which can log
transitions on its capture unit pins. Event Manager A (EVA) uses
capture units 1, 2, and 3. Event Manager B (EVB) uses capture units
4, 5, and 6.

The quadrature encoder pulse (QEP) circuit decodes and counts
quadrature encoded input pulses on these capture unit pins. QEP
pulses are two sequences of pulses with varying frequency and a fixed
phase shift of 90 degrees (or one-quarter of a period). Both edges of
the QEP pulses are counted so the frequency of the QEP clock is four
times the input sequence frequency.

The QEP, in combination with an optical encoder, is particularly useful
for obtaining speed and position information from a rotating machine.
Logic in the QEP circuit determines the direction of rotation by which
sequence is leading. For module A, if the QEP1 sequence leads, the
general-purpose (GP) Timer counts up and if the QEP2 sequence leads,
the timer counts down. The pulse count and frequency determine the
angular position and speed.

7-154

C281x QEP

Dialog
Box

Module
Specifies which QEP pins to use:

• A — Uses QEP1 and QEP2 pins.

• B — Uses QEP3 and QEP4 pins.

Counting mode
Specifies how to count the QEP pulses:

• Counter — Count the pulses based on the board’s GP Timer 2
(or GP Timer 4 for EVB).

• RPM — Count the machine’s revolutions per minute.

Positive rotation
Defines whether to use Clockwise or Counterclockwise as the
direction to use as positive rotation. This field appears only if
you select RPM above.

7-155

C281x QEP

Encoder resolution
Number of QEP pulses per revolution. This field appears only
if you select RPM above.

Initial count
Initial value for the counter. The default is 0.

Sample time
Time interval, in seconds, between consecutive reads from the
QEP pins.

Data type
Data type of the QEP pin data. The data is read as 16-bit data
and then cast to the selected data type. Valid data types are auto,
double, single, int8, uint8, int16, uint16, int32, uint32 or
boolean.

7-156

C281x SCI Receive

Purpose Receive data on target via serial communications interface (SCI) from
host

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x SCI Receive block supports asynchronous serial digital
communications between the target and other asynchronous peripherals
in nonreturn-to-zero (NRZ) format. This block configures the C281x
DSP target to receive scalar or vector data from the COM port via the
C28x target’s COM port.

Note For any given model, you can have only one C281x SCI Receive
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-157

C281x SCI Receive

Dialog
Box

SCI module
SCI module to be used for communications.

7-158

C281x SCI Receive

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Transmit block.

Data type
Data type of the output data. Available options are single, int8,
uint8, int16, uint16, int32, or uint32.

Data length
How many of Data type the block will receive (not bytes).
Anything more than 1 is a vector. The data length is inherited

7-159

C281x SCI Receive

from the input (the data length originally input to the host-side
SCI Transmit block).

Initial output
Default value from the c281x SCI Receive block. This value is
used, for example, if a connection time-out occurs and the When
connection timeout field is set to “Output the last received
value”, but nothing yet has been received.

When connection timeout
Specifies what to output if a connection time-out occurs. If
“Output the last received value” is selected, the last received value
is what is output, unless none has been received yet, in which case
the Initial output is considered the last received value.

If “Output customized value” is selected, a field for specifying a
custom value is added to the dialog box (as shown in the following
figure).

7-160

C281x SCI Receive

7-161

C281x SCI Receive

Sample time
Sample time, Ts, for the block’s input sampling. To execute this
block asynchronously, set Sample Time to -1, and refer to
“Asynchronous Interrupt Processing” on page 1-13 for a discussion
of block placement and other necessary settings.

Output receiving status
When this field is checked, the c281x SCI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an in the received data (checksum error)

• 3: SCI parity-error flag — Occurs when a character is received
with a mismatch between the number of 1s and its parity bit

• 4: SCI framing-error flag — Occurs when an expected stop bit
is not found

Enable receive FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action (for example,
read data as soon as it is received). If this option is cleared, the
block stays in polling mode. If the block is in polling mode and not
blocking, it checks the FIFO to see if there is data to read. If data
is present, it reads and outputs. If no data is present, it continues.
If the block is in polling mode and blocking, it waits until data is
available to read (when data length is reached).

7-162

C281x SCI Receive

References Detailed information on the SCI module is in the TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Transmit, C281x Hardware Interrupt

7-163

C281x SCI Transmit

Purpose Transmit data from target via serial communications interface (SCI)
to host

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x SCI Transmit block transmits scalar or vector data in int8
or uint8 format from the C281x target’s COM ports in nonreturn-to-zero
(NRZ) format. You can specify how many of the six target COM ports to
use. The sampling rate and data type are inherited from the input port.
The data type of the input port must be one of the following: single,
int8, uint8, int16, uint16, int32, or uint32. If no data type is specified,
the default data type is uint8.

Note For any given model, you can have only one C281x SCI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SCI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-164

C281x SCI Transmit

Dialog
Box

SCI module
SCI module to be used for communications.

Additional package header
This field specifies the data located at the front of the sent data
package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not sent nor are they included in
the total byte count.

7-165

C281x SCI Transmit

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Additional package terminator
This field specifies the data located at the end of the sent
data package, which is not part of the data being transmitted,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not sent nor are they
included in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the host
SCI Receive block.

Enable transmit FIFO interrupt
If this option is selected, an interrupt is posted when FIFO is full,
allowing the subsystem to take some sort of action.

References Detailed information on the SCI module is in the TMS320x281x, 280x
DSP Serial Communication Interface (SCI) Reference Guide, Literature
Number SPRU051B, available at the Texas Instruments Web site.

See Also C281x SCI Receive, C281x Hardware Interrupt

7-166

C281x SPI Receive

Purpose Receive data via serial peripheral interface (SPI) on target

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x SPI Receive supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

Note For any given model, you can have only one C281x SPI Receive
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SPI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-167

C281x SPI Receive

Dialog
Box

Data length
Specifies how many uint16s are expected to be received. Select
1 through 16.

Enable blocking mode
If this option is selected, system waits until data is received before
continuing processing.

Output receive error status
When this field is checked, the c281x SPI Receive block adds
another output port for the transaction status, and appears as
shown in the following figure.

7-168

C281x SPI Receive

Error status may be one of the following values:

• 0: No errors

• 1: Data loss occurred (Overrun: when FIFO disabled, Overflow:
when FIFO enabled)

• 2: Data not ready, a time-out occurred while the block was
waiting to receive data

Post interrupt when data is received
Check this check box to post an asynchronous interrupt when
data is received.

Sample time
Sample time, Ts, for the block’s input sampling. To execute
this block asynchronously, set Sample Time to -1, check the
Post interrupt when message is received box, and refer to
“Asynchronous Interrupt Processing” on page 1-13 for a discussion
of block placement and other necessary settings.

See Also C281x SPI Transmit, C281x Hardware Interrupt

7-169

C281x SPI Transmit

Purpose Transmit data via serial peripheral interface (SPI) to host

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x SPI Transmit supports synchronous, serial peripheral
input/output port communications between the DSP controller and
external peripherals or other controllers. The block can run in either
slave or master mode. In master mode, the SPISIMO pin transmits data
and the SPISOMI pin receives data. When master mode is selected,
the SPI initiates the data transfer by sending a serial clock signal
(SPICLK), which is used for the entire serial communications link. Data
transfers are synchronized to this SPICLK, which enables both master
and slave to send and receive data simultaneously. The maximum for
the clock is one quarter of the DSP controller’s clock frequency.

The sampling rate and data type are inherited from the input port. If
no data type is specified, the default data type is uint16.

Note For any given model, you can have only one C281x SPI Transmit
block per module. There are two modules, A and B, which can be
configured through the F2812 eZdsp target preferences block.

Many SPI-specific settings are in the DSPBoard section of the F2812
eZdsp target preferences block. You should verify that these settings
are correct for your application.

7-170

C281x SPI Transmit

Dialog
Box

Output transmit error status
When this field is checked, the c281x SPI Transmit block adds
another output port for the transaction status, and appears as
shown in the following figure.

Error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was transmitting data

• 2: There is an error in the transmitted data (for example,
header or terminator don’t match, length of data expected is too
big or too small)

7-171

C281x SPI Transmit

Enable blocking mode
If this option is selected, system waits until data is sent before
continuing processing.

Post interrupt when data is transmitted
Select this check box to post an asynchronous interrupt when
data is transmitted.

See Also C281x SPI Receive

7-172

C281x Timer

Purpose Configure up to four general-purpose, stand alone Event Manager
timers

Library c281xdspchiplib in Embedded Target for TI C2000 DSP

Description The C281x event-manager (EV) modules include general-purpose (GP)
timers. There are two general-purpose (GP) timers in each module.
These timers can be used as independent time bases in various
applications.

The C281x Timer block lets you set the periodicity of the general-purpose
timers, and configure them to post interrupts under specified conditions.

Dialog
Box

7-173

C281x Timer

Module
Timer no

Select which of four possible timers to configure. Setting Module
to A lets you select Timer 1 or Timer 2 in Timer no. Setting
Module to B lets you select Timer 3 or Timer 4 in Timer no.

Timer period
Set the length of the timer period in clock cycles. Enter a value
from 0 to 65535. The default is 10000.

You can easily calculate how many clock cycles to set for the timer
period if you know the length of a clock cycle. The calculation for
the length of one clock cycle is as follows:

Sysclk MHz HISPCLK InputClock escaler() (/) Pr (/)150 1 2 1 128→ →

where the System clock frequency of 150MHz is divided by
the high speed clock prescaler of 2, and then divided by the
timer control input clock prescaler, which is 128. The resulting
frequency is .586MHz. Thus, one clock cycle is 1/.586MHz, which
is 1.706µs.

Compare value
Enter a constant value to be used for comparison to the running
timer value for the purpose of generating interrupts. Enter a value
from 0 to 65535. The default is 5000. Note that interrupts will be
generated only if Post interrupt on compare match is selected.

Post interrupt on period match
Select this check box to generate an interrupt whenever the value
of the timer reaches its maximum value as specified in Timer
period.

Post interrupt on underflow
Select this check box to generate an interrupt whenever the value
of the timer cycles back to 0.

Post interrupt on overflow
Select this check box to generate an interrupt whenever the value
of the timer reaches its maximum possible value of 65535. Note

7-174

C281x Timer

that unless Timer period is set to 65535, this interrupt will
never be generated even if this check box is selected.

Post interrupt on compare match
Select this check box to generate an interrupt whenever the value
of the timer equals Compare value.

See Also C281x Hardware Interrupt, Idle Task

7-175

Clarke Transformation

Purpose Convert balanced three-phase quantities to balanced two-phase
quadrature quantities

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts balanced three-phase quantities into balanced
two-phase quadrature quantities. The transformation implements
these equations

Id Ia

Iq Ib Ia

=

= +() /2 3

and is illustrated in the following figure.

The inputs to this block are the phase a (As) and phase b (Bs)
components of the balanced three-phase quantities and the outputs
are the direct axis (Alpha) component and the quadrature axis (Beta)
of the transformed signal.

The instantaneous outputs are defined by the following equations and
are shown in the following figure:

7-176

Clarke Transformation

ia I t
ib I t
ic I t
id I t

=
= +
= −
=

* sin()
* sin(/)
* sin(/)
* sin()

ω
ω π
ω π
ω

2 3
2 3

iiq I t= +* sin(/)ω π 2

The variables used in the preceding equations and figures correspond to
the variables on the block as shown in the following table:

Equation Variables Block Variables

Inputs ia As

ib Bs

Outputs id Alpha

iq Beta

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

7-177

Clarke Transformation

Dialog
Box

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Inverse Park Transformation, Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

7-178

Custom C280x Board

Purpose Target preferences for custom C280x board

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation
for your custom board based on a F2801, F2802, F2806, F2808, or
F2809 chip. Adding this block to your Simulink model provides access
to building, linking, compiling, and targeting settings you need to
configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

7-179

Custom C280x Board

Dialog
Box

BuildOptions

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs. Options
are

• Verbose — Returns all compiler messages.

• Quiet — Suppresses compiler progress messages.

7-180

Custom C280x Board

• Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is False—.asm files are not kept in your
current directory. If you choose to keep the .asm files, set this
option to True.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes—symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True—the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True—the .obj
files are retained.

7-181

Custom C280x Board

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

• Internal_memory_map — Uses the small memory model on the
target, which requires that all sections of the code and data
fit into the internal memory available only on the C280x chip
(minus the flash memory).

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message in
the CCS IDE indicating that your data does not fit in internal
memory or that your code does not fit in internal memory. The
error message looks like one of the following:

error: can't allocate '.far'
error: can't allocate '.text'

Note When you use Internal_memory_map, specifying a
LinkerCmdFileName has no effect.

• Flash_memory_map — Uses flash memory, in which case
your data can use the full storage capacity of the available
flash memory. When you are using flash memory, you cannot
set the BuildAction preference in the BuildOptions —
RunTimeOptions section to Build_and_execute. For more
information on using Flash memory, see “Creating Stand-Alone
Applications by Saving Code into Flash Memory”.

• Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. The software does not verify
that the commands in this file are correct.

7-182

Custom C280x Board

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The order
in which the actions are presented is significant — each listed
action does what the previous action in the list does, and adds
new features of its own:

• Generate_code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TI
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and
many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

• Create_CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

• Build — Builds the executable COFF file, but does not
download the file to the target.

• Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This option is the default.

Setting this option requires corresponding options to be set
in the CCS:

a From the CCS window, select Option > Customize... .

7-183

Custom C280x Board

b Select the Program/Project Load tab on the Customize
dialog box, as shown in the following figure.

c Uncheck the Load Program After Build option.

Note When you build and execute a model on your target,
Real-Time Workshop resets the target automatically. You do
not need to reset the board before building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs:

7-184

Custom C280x Board

• Continue — Ignore overruns encountered while running the
model. This option is the default.

• Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
option is set to True (the default), then after you build your model,

7-185

Custom C280x Board

you see the CCS object in your MATLAB workspace browser with
the name you provided and class type ccsdsp.

CodeGeneration — Scheduler

Algorithm
Algorithm to use for scheduling. Currently, the only algorithm
option is Preemptive_priority_based. This scheduler runs
based on the timer interrupt. The timer period is set based
on the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see “Models with Multiple Sample
Rates” in the “Real-Time Workshop” documentation.

Timer
CPU timer to use for scheduling.

7-186

Custom C280x Board

DSPBoard

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label displayed in the dialog box must match the
label (name) of the board entered in your Code Composer Studio
setup.

7-187

Custom C280x Board

DSPBoard — DSPChip

7-188

Custom C280x Board

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. For more information on configuring these specific
prescalers, see “Configuring Acquisition Window Width for ADC
Blocks”. You can set the following parameters for the ADC module:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling or acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

CPS
After the HSPCLK speed is divided by the ADCLKPS value,
the result is further divided by 2 if the CPS parameter is
set to 1, which is the default.

ExternalReferenceSelector
By default, an internally generated bandgap voltage
reference is selected to supply the ADC logic. However,
depending on application requirements, the ADC logic may
be supplied by an external voltage reference. Choose True
to use an external voltage reference.

OffsetCorrectionValue
The 280x ADC supports offset correction via a 9-bit value
that is added or subtracted before the results are available
in the ADC result registers. Timing for results is not
affected. The default for this field is 0.

7-189

Custom C280x Board

DSPChipLabel
DSP chip model. All supported C280x chips are listed. Select the
DSP chip installed on your target. The selected value defaults to
TI TMS320F2808. Other available options are TI TMS320F2801,
TI TMS320F2802, TI TMS320F2806, and TI TMS320F2809.

SCI_A
The serial communications interface parameters you can set for
module A are

BaudRate
Baud rate for transmitting and receiving data. Select from
115200, 57600, 38400, 19200, 9600 (the default), 4800, 2400,
1200, 300, and 100.

BlockingMode
If this option is set to True, the system is going to wait until
data is available to read (when data length is reached).
If this option is set to False, the system will check FIFO
periodically to see if there is data to read. If there is data,
the system reads and outputs the contents. If not, it outputs
the last value and continues.

CharacterLengthBits
Length in bits of each transmitted/received character, set
to 8 bits.

CommunicationMode
Select raw data or protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock
condition can occur because there is no wait state. Data
transmission is asynchronous. With this mode, it is possible
the receiving side could miss data, but if the data is
noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between
host and target occurs. The transmitting side sends $SND

7-190

Custom C280x Board

indicating that it is ready to transmit. The receiving side
sends back $RDY indicating that it is ready to receive. The
transmitting side then sends data and, when completed,
sends a checksum.

Advantages to using protocol mode include

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to
send or receive

Note Deadlocks can occur if one SCI Transmit block is
trying to communicate with more than one SCI Receive
block on different COM ports when both are blocking (using
protocol mode). Deadlocks cannot occur on the same COM
port.

DataByteOrder
Select Little Endian or Big Endian.

DataSwapWidth
Select 8-bits or 16-bits.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this parameter is enabled,
a C28x DSP’s Tx pin is internally connected to Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

7-191

Custom C280x Board

ParityMode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes (e.g., 00110010) . Even sets the parity bit to one if you
have an even number of ones in your bytes (e.g., 00110011).

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SCI_B
The serial communications interface parameters you can set are

BaudRate
Baud rate for transmitting and receiving data. Select from
115200, 57600, 38400, 19200, 9600 (the default), 4800, 2400,
1200, 300, and 100.

BlockingMode
If this option is set to True, system is going to wait until data
is available to read (when data length is reached). If this
option is set to False, system will check FIFO periodically to
see if there is any data to read. If there is data, it reads and
outputs the contents. If there is no data, it outputs the last
value and continues.

CharacterLengthBits
Length in bits of each transmitted/received character, set
to 8 bits.

7-192

Custom C280x Board

CommunicationMode
Select raw data or protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock
condition can occur because there is no wait state. Data
transmission is asynchronous. With this mode, it is possible
the receiving side could miss data, but if the data is
noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between
host and target occurs. The transmitting side sends $SND
indicating that it is ready to transmit. The receiving side
sends back $RDY indicating that it is ready to receive. The
transmitting side then sends data and, when transmission
is completed, it sends a checksum.

Advantages to using protocol mode include

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to
send or receive

Note Deadlocks can occur if one SCI Transmit block is
trying to communicate with more than one SCI Receive
block on different COM ports when both are blocking (using
protocol mode). Deadlocks cannot occur on the same COM
port.

DataByteOrder
Select Little Endian or Big Endian.

7-193

Custom C280x Board

DataSwapWidth
Select 8-bits or 16-bits.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes (e.g., 00110010) . Even sets the parity bit to one if you
have an even number of ones in your bytes (e.g., 00110011).

PinAssignment_Rx
Assigns the SCI receive something to a GPIO pin. Choices
are None (default), GPI011, GPI015, GPI019, or GPI023.

PinAssignment_Tx
Assigns the SCI transmit something to a GPIO pin. Choices
are None (default), GPI09, GPI014, GPI018, or GPI022.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

7-194

Custom C280x Board

SPI_A
The serial peripheral interface parameters you can set for the
A module are:

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Select No_delay or Delay_half_cycle.

ClockPolarity
Select Rising_edge or Falling_edge.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

EnableLoopback
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

FIFOEnable
Set true or false.

FIFOInterruptLevel_Rx
Set level for receive FIFO interrupt. Select 0 through 16.

FIFOInterruptLevel_Tx
Set level for transmit FIFO interrupt. Select 0 through 16.

7-195

Custom C280x Board

FIFOTransmitDelay
Enter FIFO transmit delay (in target clock cycles) to pause
between data transmissions.

Mode
Set to Master or Slave.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

7-196

Custom C280x Board

7-197

Custom C280x Board

SPI_B
The serial peripheral interface parameters you can set for the
B module are

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Select No_delay or Delay_half_cycle.

ClockPolarity
Select Rising_edge or Falling_edge.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

EnableLoopback
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

FIFOEnable
Set true or false.

FIFOInterruptLevel_Rx
Set level for receive FIFO interrupt. Select 0 through 16.

FIFOInterruptLevel_Tx
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFOTransmitDelay
Enter FIFO transmit delay (in seconds).

7-198

Custom C280x Board

Mode
Set to Master or Slave.

PinAssignment_CLK
Assigns the SPI something (CLK) to a GPIO pin. Choices
are None (default), GPI014, or GPI026.

PinAssignment_SIMO
Assigns the SPI something (SIMO) to a GPIO pin. Choices
are None (default), GPI012, or GPI024.

PinAssignment_SOMI
Assigns the SPI something (SOMI) to a GPIO pin. Choices
are None (default), GPI013, or GPI025.

PinAssignment_STE
Assigns the SPI something (STE) to a GPIO pin. Choices
areNone (default), GPI015, or GPI027.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SPI_C
The parameters you can set for the SPI_C module include all the
parameters for the SPI_A module.

SPI_D
The parameters you can set for the SPI_D module include all the
parameters for the SPI_A module.

7-199

Custom C280x Board

eCAN_A
Most of these parameters control the timing of the board. For
more information see “Configuring Timing Parameters for CAN
Blocks”. The parameters you can set are:

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The

7-200

Custom C280x Board

default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only_falling_edges and
Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If this option is set to True, the eCAN module goes to
loopback mode, where a “dummy” acknowledge message is
sent back without needing an acknowledge bit. The default
is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
the BaudRatePrescaler, determines the length of a bit on
the eCAN bus. Valid values for TSEG1 are from 1 through
16.

TSEG2
Sets the value of time segment 2 , which, with TSEG1 and
the BaudRatePrescaler, determines the length of a bit on
the eCAN bus. Valid values for TSEG2 are from 1 through 8.

7-201

Custom C280x Board

eCAN_B
The parameters you can set for the eCAN_B module include all the
parameters for the eCAN_A module.

ePWM
Assigns ePWM signals to GPIO pins, if required.

PinAssignment_SYNCI
Assigns the ePWM external sync pulse input (SYNCI) to
a GPIO pin. Choices are None (the default), GPIO6, and
GPIO32.

PinAssignment_SYNCO
Assigns the ePWM external sync pulse output (SYNCO)
to a GPIO pin. Choices are None (the default), GPIO6, and
GPIO33.

PinAssignment_TZ5
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices
are None (the default), GPIO16, and GPIO28.

PinAssignment_TZ6
Assigns the trip-zone input 6(TZ6) to a GPIO pin. Choices
are None (the default), GPIO17, and GPIO29.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM

7-202

Custom C281x Board

Purpose Target preferences for custom C281x board

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for
your custom board based on a C2810, F2810, C2811, F2811, R2811,
C2812, F2812, or R2812 chip. Adding this block to your Simulink model
provides access to building, linking, compiling, and targeting settings
you need to configure the code that Real-Time Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

7-203

Custom C281x Board

Dialog
Box

BuildOptions

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs. Options
are

• Verbose — Returns all compiler messages.

• Quiet — Suppresses compiler progress messages.

• Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is false—.asm files are not kept in your

7-204

Custom C281x Board

current directory. If you choose to keep the .asm files, set this
option to true.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes—symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True—the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True—the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

7-205

Custom C281x Board

• Internal_memory_map — Uses the small memory model on the
target, which requires that all sections of the code and data fit
into the internal memory available only on the C281x chip (not
including the flash memory).

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message in
the CCS IDE indicating that your data does not fit in internal
memory or that your code does not fit in internal memory. The
error message looks like one of the following:

error: can't allocate '.far'
error: can't allocate '.text'

If you use Internal_memory_map, specifying a
LinkerCmdFileName has no effect.

• Flash_memory_map — Uses flash memory, in which case
your data can use the full storage capacity of the available
flash memory. When you are using flash memory, you cannot
set the BuildAction preference in the BuildOptions —
RunTimeOptions section to Build_and_execute. For more
information on using Flash memory, see “Creating Stand-Alone
Applications by Saving Code into Flash Memory”.

• Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. The software does not verify
that the commands in this file are correct.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The
actions are cumulative—each listed action adds features to the
previous action on the list and includes all the previous features:

• Generate_code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TI

7-206

Custom C281x Board

software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and
many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

• Create_CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

• Build — Builds the executable COFF file, but does not
download the file to the target.

• Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This option is the default.

Setting this option requires corresponding options to be set
in the CCS:

a From the CCS window, select Option > Customize... .

b Select the Program/Project Load tab on the Customize
dialog box, as shown in the following figure.

7-207

Custom C281x Board

c Uncheck the Load Program After Build option.

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs:

• Continue — Ignore overruns encountered while running the
model. This option is the default.

7-208

Custom C281x Board

• Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
parameter is set to True, after you build your model, you will see
the CCS object in your MATLAB workspace browser with the
name you provided and class type ccsdsp.

7-209

Custom C281x Board

CodeGeneration — Scheduler

Algorithm
Algorithm to use for scheduling. Currently, the only algorithm
option is Preemptive_priority_based. This scheduler runs
based on the timer interrupt. The timer period is set based
on the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see “Models with Multiple Sample
Rates” in the “Real-Time Workshop” documentation.

Timer
CPU timer to use for scheduling.

7-210

Custom C281x Board

DSPBoard

7-211

Custom C281x Board

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match the label (name) of the
board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. For more information on configuring these prescalers, see
“Configuring Acquisition Window Width for ADC Blocks”. You can
set the following parameters for the ADC clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling or acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

CPS
After the HSPCLK speed is divided by the ADCLKPS value,
the result is further divided by 2 if the CPS parameter is
set to 1, which is the default value.

7-212

Custom C281x Board

DSPChipLabel
DSP chip model. All supported C281x chips are listed. Select the
DSP chip installed on your target. The selected value defaults to
TI TMS320C2810. Other available options are

TI TMS320F2810
TI TMS320C2811
TI TMS320F2811
TI TMS320R2811
TI TMS320C2812
TI TMS320F2812
TI TMS320R2812

SCI_A
Parameters that affect the serial communications interface (SCI)
for module A on the target. You can set the following parameters:

BaudRate
Baud rate for transmitting and receiving data. Select from
115200 (the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 100.

BlockingMode
If this option is set to True, the system waits until data
is available to read (when data length is reached). If this
option is set to False, system checks FIFO periodically (in
polling mode) to see if there is any data to read. If data is
present, it reads and outputs the contents. If no data is
present, it outputs the last value and continues.

CharacterLengthBits
Length in bits of each transmitted/received character, set
to 8 bits.

CommunicationMode
Select raw data or protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock
condition can occur because there is no wait state. Data

7-213

Custom C281x Board

transmission is asynchronous. With this mode, it is possible
that the receiving side could miss data, but if the data is
noncritical, then using raw data mode avoids blocking any
processes.

If you specify protocol mode, some handshaking between
host and target occurs. The transmitting side sends $SND
indicating that it is ready to transmit. The receiving side
sends back $RDY indicating that it is ready to receive. The
transmitting side then sends data and, when the transaction
is completed, it sends a checksum.

Advantages to using protocol mode include

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to
send or receive

Note Deadlocks can occur if one SCI Transmit block is
trying to communicate with more than one SCI Receive
block on different COM ports when both are blocking (using
protocol mode). Deadlocks cannot occur on the same COM
port.

DataByteOrder
Select Little Endian or Big Endian.

DataSwapWidth
Select 8-bits or 16-bits.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a

7-214

Custom C281x Board

C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes (e.g., 00110010) . Even sets the parity bit to one if you
have an even number of ones in your bytes (e.g., 00110011).

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SCI_B
The parameters you can set for the SCI_B module include all the
parameters for the SCI_A module.

SPI
Parameters that affect the serial peripheral interface (SPI) on the
target. You can set the following parameters:

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

7-215

Custom C281x Board

ClockPhase
Whether the data is output immediately (No_delay) or
delayed by a half clock cycle (Delay_half_cycle) with
respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising_edge or
Falling_edge of the system clock.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

EnableLoopback
Select True to enable the loopback function for self-test and
diagnostic purposes only. The SPI must be in master mode
to use loopback. When this function is enabled, a C281x
DSP’s SIMO/SOMI lines are connected internally.

FIFOEnable
Select True to enable the FIFO buffers in the SPI module.

FIFOInterruptLevel_Rx
Set level for receive FIFO interrupt. Select 0 through 16.

FIFOInterruptLevel_Tx
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFOTransmitDelay
Amount of time in target clock cycles to pause between data
transmissions.

Mode
Whether to run the SPI module in Master or Slave mode.
Master mode initiates the transmission. Slave mode is
triggered by another master SPI and is synchronized to the
clock used by the master SPI. This option cannot be changed
at runtime.

7-216

Custom C281x Board

SuspensionMode
Suspension to use when debugging your program with
Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

eCAN
Parameters that affect the extended Control Area Network
(eCAN) module. Most of these parameters affect the eCAN
bit timing. For more information see “Configuring Timing
Parameters for CAN Blocks”.

The eCAN parameters you can set are:

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

7-217

Custom C281x Board

SBG
Sets the message resynchronization triggering.
Options are Only_falling_edges and
Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If True, sets the eCAN module to loopback mode, where
a “dummy” acknowledge message is sent back without
needing an acknowledge bit. The default is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
BaudRatePrescaler, determines the length of a bit on the
eCAN bus. Valid values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2, which, with TSEG1 and
BaudRatePrescaler, determines the length of a bit on the
eCAN bus. Valid values for TSEG2 are from 1 through 8.

See Also C281x ADC, C281x eCAN Receive, C281x eCAN Transmit, C281x PWM

7-218

Division IQN

Purpose Divide two IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block divides two numbers that use the same Q format, using the
Newton-Raphson technique. The resulting quotient uses the same Q
format at the inputs.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Float to IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-219

F2808 eZdsp

Purpose F2808 eZdsp DSK target preferences

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation
for your Spectrum Digital F2808 eZdsp target. Adding this block to
your Simulink model provides access to building, linking, compiling,
and targeting settings you need to configure the code that Real-Time
Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

7-220

F2808 eZdsp

Dialog
Box

BuildOptions

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs. Options
are

• Verbose — Returns all compiler messages.

• Quiet — Suppresses compiler progress messages.

• Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after

7-221

F2808 eZdsp

creation. The default is False—.asm files are not kept in your
current directory. If you choose to keep the .asm files, set this
option to True.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes—symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True—the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True—the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and

7-222

F2808 eZdsp

the names of input files to the linker or hex conversion utility.
Linker command file types are

• Internal_memory_map — Uses the small memory model on the
target, which requires that all sections of the code and data fit
into the memory available only on the F2808 DSP chip (minus
the flash memory).

When you select the Internal_memory_map option, the
Embedded Target for TI C2000 DSP specifies that only the
available internal memory on the F2808 is used.

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message in
the CCS IDE indicating that your data does not fit in internal
memory or that your code does not fit in internal memory. The
error message looks like one of the following:

error: can't allocate '.far'
error: can't allocate '.text'

To eliminate these errors, select Full_memory_map. Your
program might run slower than if you use the internal map
option.

• Full_memory_map — Uses the large memory model on the
target, which does not restrict the size of the code and data
sections to DSP memory only. Your data can use the storage
space up to the limits of the board.

• Flash_memory_map — Uses flash memory, in which case
your data can use the full storage capacity of the available
flash memory. When you are using flash memory, you cannot
set the BuildAction preference in the BuildOptions —
RunTimeOptions section to Build_and_execute. For more
information on using Flash memory, see “Creating Stand-Alone
Applications by Saving Code into Flash Memory”.

• Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. The software does not verify

7-223

F2808 eZdsp

that the commands in this file are correct. Note that if you
use Internal_memory_map or Full_memory_map, specifying a
LinkerCmdFileName has no effect.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The order
in which the actions are presented is significant — each listed
action does what the previous action in the list does, and adds
new features of its own:

• Generate_code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TI
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and
many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

• Create_CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

• Build — Builds the executable COFF file, but does not
download the file to the target.

• Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This option is the default.

7-224

F2808 eZdsp

Setting this option requires corresponding options to be set
in the CCS:

a From the CCS window, select Option > Customize... .

b Select the Program/Project Load tab on the Customize
dialog box, as shown in the following figure

c Uncheck the Load Program After Build option.

7-225

F2808 eZdsp

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs:

• Continue — Ignore overruns encountered while running the
model. This is the default.

• Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it

7-226

F2808 eZdsp

is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
parameter is set to True (the default), then after you build your
model, you see the CCS object in your MATLAB workspace
browser with the name you provided and class type ccsdsp.

CodeGeneration — Scheduler

Algorithm
Algorithm to use for scheduling. Currently, the only algorithm
option is Preemptive_priority_based. This scheduler runs
based on the timer interrupt. The timer period is set based
on the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see “Models with Multiple Sample
Rates” in the “Real-Time Workshop” documentation.

Timer
CPU timer to use for scheduling.

7-227

F2808 eZdsp

DSPBoard

7-228

F2808 eZdsp

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match the label (name) of the
board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. For more information on configuring these scalers, see
“Configuring Acquisition Window Width for ADC Blocks”. You can
set the following parameters for the ADC clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling or acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

CPS
After the HSPCLK speed is divided by the ADCLKPS
value, the result will be further divided by 2 if the CPS
parameter is set to 1, which is the default.

ExternalReferenceSelector
By default, an internally generated bandgap voltage
reference is selected to supply the ADC logic. However,

7-229

F2808 eZdsp

depending on application requirements, the ADC logic may
be supplied by an external voltage reference. Choose True
to use an external voltage reference.

OffsetCorrectionValue
The 280x ADC supports offset correction via a 9-bit value
that is added or subtracted before the results are available
in the ADC result registers. Timing for results is not
affected. The default value is 0.

DSPChipLabel
DSP chip model. All supported C2000 chips are listed. For
the F2808 eZdsp board, the selected value defaults to TI
TMS320C2808. If you select a different chip model, an error is
generated in code generation.

SCI_A
The serial communications interface parameters you can set for
module A. These parameters are:

BaudRate
Baud rate for transmitting and receiving data. Select from
115200 (the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 110.

BlockingMode
If this option is set to True, system waits until data is
available to read (when data length is reached). If this
option is set to False, system checks FIFO periodically (in
polling mode) to see if there is any data to read. If data is
present, it reads and outputs the contents. If no data is
present, it outputs the last value and continues.

CharacterLengthBits
Length in bits of each transmitted or received character,
set to 8 bits.

7-230

F2808 eZdsp

CommunicationMode
Select raw data or protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock
condition can occur because there is no wait state. Data
transmission is asynchronous. With this mode, it is possible
the receiving side could miss data, but if the data is
noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between
host and target occurs. The transmitting side sends $SND
indicating that it is ready to transmit. The receiving side
sends back $RDY indicating that it is ready to receive.
The transmitting side then sends data and, when the
transmission is completed, it sends a checksum.

Advantages to using protocol mode include

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to
send or receive

Note Deadlocks can occur if one SCI Transmit block is
trying to communicate with more than one SCI Receive
block on different COM ports when both are blocking (using
protocol mode). Deadlocks cannot occur on the same COM
port.

DataByteOrder
Select Little Endian or Big Endian.

7-231

F2808 eZdsp

DataSwapWidth
Select 8-bits or 16-bits.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are Odd parity or
Even parity. Enable Parity must be set to True to use the
selected ParityMode.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SCI_B
The serial communications interface parameters you can set for
module B. These parameters are:

BaudRate
Baud rate for transmitting and receiving data. Select from
115200(the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 110.

7-232

F2808 eZdsp

BlockingMode
If this option is set to True, the system waits until data
is available to read (when data length is reached). If this
option is set to False, system will check FIFO periodically
(in polling mode) to see if there is any data to read. If data
is present, it reads and outputs the contents. If no data is
present, it outputs the last value and continues.

CharacterLengthBits
Length in bits of each transmitted/received character, set
to 8 bits.

CommunicationMode
Select raw data or protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock
condition can occur because there is no wait state. Data
transmission is asynchronous. With this mode, it is possible
the receiving side could miss data, but if the data is
noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between
host and target occurs. The transmitting side sends $SND
indicating that it is ready to transmit. The receiving side
sends back $RDY indicating that it is ready to receive.
The transmitting side then sends data and, when the
transmission is completed, it sends a checksum.

Advantages to using protocol mode include

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to
send or receive

7-233

F2808 eZdsp

Note Deadlocks can occur if one SCI Transmit block is
trying to communicate with more than one SCI Receive
block on different COM ports when both are blocking (using
protocol mode). Deadlocks cannot occur on the same COM
port.

DataByteOrder
Select Little Endian or Big Endian.

DataSwapWidth
Select 8-bits or 16-bits.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes (e.g., 00110010) . Even sets the parity bit to one if you
have an even number of ones in your bytes (e.g., 00110011).

PinAssignment_Rx
Assigns the SCI receive something to a GPIO pin. Choices
are None (default), GPI011, GPI015, GPI019, or GPI023.

PinAssignment_Tx
Assigns the SCI transmit something to a GPIO pin. Choices
are None (default), GPI09, GPI014, GPI018, or GPI022.

7-234

F2808 eZdsp

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SPI_A
The serial peripheral interface parameters you can set for the A
module. These parameters are:

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Select No_delay or Delay_half_cycle.

ClockPolarity
Select Rising_edge or Falling_edge.

DataBits
Length in bits from 1 to 16 of each transmitted/received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

EnableLoopback
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and

7-235

F2808 eZdsp

can transmit data from its output port to its input port to
check the integrity of the transmission.

FIFOEnable
Set true or false.

FIFOInterruptLevel_Rx
Set level for receive FIFO interrupt. Select 0 through 16.

FIFOInterruptLevel_Tx
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFOTransmitDelay
Enter FIFO transmit delay (in target clock cycles) to pause
between data transmissions.

Mode
Set to Master or Slave.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

7-236

F2808 eZdsp

7-237

F2808 eZdsp

SPI_B
The serial peripheral interface parameters you can set for the B
module. These parameters are:

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Select No_delay or Delay_half_cycle.

ClockPolarity
Select Rising_edge or Falling_edge.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

EnableLoopback
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

FIFOEnable
Set true or false.

FIFOInterruptLevel_Rx
Set level for receive FIFO interrupt. Select 0 through 16.

FIFOInterruptLevel_Tx
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFOTransmitDelay
Enter FIFO transmit delay (in seconds).

7-238

F2808 eZdsp

Mode
Set to Master or Slave.

PinAssignment_CLK
Assigns the SPI something (CLK) to a GPIO pin. Choices
are None (default), GPI014, or GPI026.

PinAssignment_SIMO
Assigns the SPI something (SIMO) to a GPIO pin. Choices
are None (default), GPI012, or GPI024.

PinAssignment_SOMI
Assigns the SPI something (SOMI) to a GPIO pin. Choices
are None (default), GPI013, or GPI025.

PinAssignment_STE
Assigns the SPI something (STE) to a GPIO pin. Choices
areNone (default), GPI015, or GPI027.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive or transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SPI_C
The parameters you can set for the SPI_C module include all the
parameters for the SPI_A module.

SPI_D
The parameters you can set for the SPI_D module include all the
parameters for the SPI_A module.

7-239

F2808 eZdsp

eCAN_A
For more help on setting the timing parameters for the eCAN
modules see: “Configuring Timing Parameters for CAN Blocks”.
You can set the following parameters for the eCAN module:

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The

7-240

F2808 eZdsp

default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only_falling_edges and
Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If this parameter is set to True, the eCAN module goes to
loopback mode, where a “dummy” acknowledge message is
sent back without needing an acknowledge bit. The default
is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
BaudRatePrescaler, determines the length of a bit on the
eCAN bus. Valid values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2, which, with TSEG1 and
BaudRatePrescaler, determines the length of a bit on the
eCAN bus. Valid values for TSEG2 are from 1 through 8.

7-241

F2808 eZdsp

eCAN_B
The parameters you can set for the eCAN_B module include all the
parameters for the eCAN_A module plus the following parameters
which only apply when you are using the eCAN_B module:

PinAssignment_Rx
Assigns the CAN receive pin to use with the eCAN_B module.
Possible values are GPIO10, GPIO13, GPIO17, and GPIO21.

PinAssignment_Tx
Assigns the CAN transmit pin to use with the eCAN_B
module. Possible values are GPIO8, GPIO12, GPIO16, and
GPIO20.

ePWM
Assigns ePWM signals to GPIO pins, if required.

PinAssignment_SYNCI
Assigns the ePWM external sync pulse input (SYNCI) to
a GPIO pin. Choices are None (the default), GPIO6, and
GPIO32.

PinAssignment_SYNCO
Assigns the ePWM external sync pulse output (SYNCO)
to a GPIO pin. Choices are None (the default), GPIO6, and
GPIO33.

PinAssignment_TZ5
Assigns the trip-zone input 5 (TZ5) to a GPIO pin. Choices
are None (the default), GPIO16, and GPIO28.

PinAssignment_TZ6
Assigns the trip-zone input 6(TZ6) to a GPIO pin. Choices
are None (the default), GPIO17, and GPIO29.

See Also C280x ADC, C280x eCAN Receive, C280x eCAN Transmit, C280x
ePWM, C280x eQEP, C280x Hardware Interrupt, Idle Task

7-242

F2812 eZdsp

Purpose F2812 eZdsp DSK target preferences

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation
for your Spectrum Digital F2812 eZdsp target. Adding this block to
your Simulink model provides access to building, linking, compiling,
and targeting settings you need to configure the code that Real-Time
Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

7-243

F2812 eZdsp

Dialog
Box

BuildOptions

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs. Options
are

• Verbose — Returns all compiler messages.

• Quiet — Suppresses compiler progress messages.

• Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is false—.asm files are not kept in your

7-244

F2812 eZdsp

current directory. If you choose to keep the .asm files, set this
option to true.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes— symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True — the listing is produced.

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object files to generate a single executable common object file
format (COFF) file that you run on the target DSP. The object
files are saved to your current project directory. Saving your .obj
files can speed up the compile process by not having to recompile
files that you have not changed. The default is True—the .obj
files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

7-245

F2812 eZdsp

• Internal_memory_map — Uses the small memory model on the
target, which requires that all sections of the code and data fit
into the memory available only on the F2812 DSP chip (minus
the flash memory).

• Full_memory_map — Uses the large memory model on the
target, which does not restrict the size of the code and data
sections to DSP memory only. Your data can use the storage
space up to the limits of the board.

• Flash_memory_map — Uses flash memory, in which case
your data can use the full storage capacity of the available
flash memory. When you are using flash memory, you cannot
set the BuildAction preference in the BuildOptions —
RunTimeOptions section to Build_and_execute. For more
information on using Flash memory, see “Creating Stand-Alone
Applications by Saving Code into Flash Memory”.

• Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. The software does not
verify that the commands in this file are correct. If you use
Internal_memory_map or Full_memory_map, specifying a
Custom_file has no effect.

When you select the Internal_memory_map option, the Embedded
Target for TI C2000 DSP specifies that only the available internal
memory on the F2812 is used.

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message like
the following in the CCS IDE:

error: can't allocate '.far'
or
error: can't allocate '.text'

7-246

F2812 eZdsp

indicating that your data does not fit in internal memory or that
your code does not fit in internal memory. To eliminate these
errors, select Full_memory_map. Your program might run more
slowly than if you use the internal map option.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The
actions are cumulative—each listed action adds features to the
previous action on the list and includes all the previous features:

• Generate_code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TI
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and
many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

• Create_CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

• Build — Builds the executable COFF file, but does not
download the file to the target.

• Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This option is the default.

7-247

F2812 eZdsp

Setting this option requires corresponding options to be set
in the CCS:

a From the CCS window, select Option > Customize... .

b Select the Program/Project Load tab on the Customize
dialog box as shown in the following figure:

c Uncheck the Load Program After Build option.

7-248

F2812 eZdsp

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs.

• Continue — Ignore overruns encountered while running the
model. This is the default.

• Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and

7-249

F2812 eZdsp

MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it
is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
parameter is set to true, after you build your model, you see the
CCS object in your MATLAB workspace browser with the name
you provided and class type ccsdsp.

CodeGeneration — Scheduler

Algorithm
Algorithm to use for scheduling. Currently, the only algorithm
option is Preemptive_priority_based. This scheduler runs
based on the timer interrupt. The timer period is set based
on the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower

7-250

F2812 eZdsp

tasks. For more information, see “Models with Multiple Sample
Rates” in the “Real-Time Workshop” documentation.

Timer
CPU timer to use for scheduling.

7-251

F2812 eZdsp

DSPBoard

7-252

F2812 eZdsp

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match exactly the label (name) of
the board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

DSPChipLabel
DSP chip model. Select the DSP chip installed on your target. The
chip model is fixed for the F2812 eZdsp. If you change the chip
model, an error is generated in code generation.

ADC
The internal timing of the ADC module is controlled by the
high-speed peripheral clock (HSPCLK). The ADC operating clock
speed is derived in several prescaler stages from the HSPCLK
speed. For more information on configuring these specific scalers,
see “Configuring Acquisition Window Width for ADC Blocks”. You
can set the following parameters for the ADC clock prescaler:

ACQ_PS
This value does not actually have a direct effect on the ADC
module’s core clock speed. It serves to determine the width
of the sampling or acquisition period. The higher the value,
the wider the sampling period. The default value is 4.

ADCLKPS
The HSPCLK speed is divided by this 4-bit value as the first
step in deriving the ADC module’s core clock speed. The
default value is 3.

7-253

F2812 eZdsp

CPS
After the HSPCLK speed is divided by the ADCLKPS value,
the result is further divided by 2 if the CPS parameter is
set to 1, which is the default.

ExternalReferenceSelector
By default, an internally generated bandgap voltage
reference is selected to supply the ADC logic. However,
depending on application requirements, the ADC logic may
be supplied by an external voltage reference. Choose True
to use an external voltage reference.

OffsetCorrectionValue
The 280x ADC supports offset correction via a 9-bit value
that is added or subtracted before the results are available
in the ADC result registers. Timing for results is not
affected. The default for this field is 0.

SCI_A
Parameters that affect the serial communications interface (SCI)
for module A on the target. The parameters you can set are:

BaudRate
Baud rate for transmitting and receiving data. Choices are
115200 (the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 110.

BlockingMode
If this option is set to True, the system waits until data
is available to read (when data length is reached). If this
option is set to False, the system checks FIFO periodically
(in polling mode) to see if there is any data to read. If data
is present, it reads and outputs the contents. If no data is
present, it outputs the last value and continues.

CharacterLengthBits
Length in bits of each transmitted or received character,
set to 8 bits.

7-254

F2812 eZdsp

CommunicationMode
Select raw data or protocol mode. Raw data is unformatted
and sent whenever the transmitting side is ready to send,
whether the receiving side is ready or not. No deadlock
condition can occur because there is no wait state. Data
transmission is asynchronous. With this mode, it is possible
the receiving side could miss data, but if the data is
noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between
host and target occurs. The transmitting side sends $SND
indicating that it is ready to transmit. The receiving side
sends back $RDY indicating that it is ready to receive.
The transmitting side then sends data and, when the
transmission is completed, it sends a checksum.

Advantages to using protocol mode include

• Avoids deadlock

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to
send or receive

Note Deadlocks can occur if one SCI Transmit block is
trying to communicate with more than one SCI Receive
block on different COM ports when both are blocking (using
protocol mode). Deadlocks cannot occur on the same COM
port.

DataByteOrder
Select Little Endian or Big Endian.

7-255

F2812 eZdsp

DataSwapWidth
Select 8-bits or 16-bits.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C28x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes (e.g., 00110010) . Even sets the parity bit to one if you
have an even number of ones in your bytes (e.g., 00110011).

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard_abort, Soft_abort, and Free_run.
Hard_abort stops the program immediately. Soft_abort
stops when the current receive/transmit sequence is
complete. Free_run continues running regardless of the
breakpoint.

SCI_B
The parameters you can set for the SCI_B module include all the
parameters for the SCI_A module.

SPI
Parameters that affect the serial peripheral interfaces (SPI) on
the target. The parameters you can set are

7-256

F2812 eZdsp

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or
delayed by a half clock cycle (Delay_half_cycle) with
respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising_edge or
Falling_edge of the system clock.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. The SPI must be in master mode
to use loopback. When this function is enabled, a C28x
DSP’s SIMO/SOMI lines are connected internally.

FIFOEnable
Select True to enable the FIFO buffers in the SPI module.

FIFOInterruptLevel_Rx
Set level for receive FIFO interrupt. Select 0 through 16.

FIFOInterruptLevel_Tx
Set level for transmit FIFO interrupt. Select 0 through 16.

FIFOTransmitDelay
Amount of time in target clock cycles to pause between data
transmissions.

7-257

F2812 eZdsp

Mode
Whether to run the SPI module in Master or Slave mode.
Master mode initiates the transmission. Slave mode is
triggered by another master SPI and is synchronized to the
clock used by the master SPI. Note that this option cannot
be changed at runtime.

SuspensionMode
Suspension to use when debugging your program with
Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive or transmit sequence is complete.
Free run continues running regardless of the breakpoint.

eCAN
Parameters that affect the extended control area network (eCAN)
module. Most of these parameters affect the eCAN bit timing. For
more information on setting the CAN bit timing parameters, see
“Configuring Timing Parameters for CAN Blocks”

You can set the following CAN parameters:

BaudRatePrescaler
Value by which to scale the bit rate. Valid values are from
1 to 256.

EnhancedCANMode
Whether to use the CAN module in extended mode, which
provides additional mailboxes and time stamping. The
default is True. Setting this parameter to False enables
only standard mode.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples

7-258

F2812 eZdsp

once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only_falling_edges and
Both_falling_and_rising_edges.

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If this option is set to True, the eCAN module goes to
loopback mode, where a “dummy” acknowledge message is
sent back without needing an acknowledge bit. The default
is False.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
BRP, determines the length of a bit on the eCAN bus. Valid
values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2, which, with TSEG1 and
BRP, determines the length of a bit on the eCAN bus. Valid
values for TSEG2 are from 1 through 8.

See Also C281x ADC, C281x eCAN Receive, C281x eCAN Transmit, C281x PWM

7-259

Float to IQN

Purpose Convert floating-point number to IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts a floating-point number to an IQ number. The Q
value of the output is specified in the dialog.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Fractional part IQN,
Fractional part IQN x int32, Integer part IQN, Integer part IQN x int32,
IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-260

Fractional part IQN

Purpose Fractional part of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the fractional portion of an IQ number. The returned
value is an IQ number in the same IQ format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN x int32, Integer part IQN, Integer part IQN x int32, IQN to
Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude
IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-261

Fractional part IQN x int32

Purpose Fractional part of result of multiplying IQ number and long integer

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns
the fractional portion of the resulting IQ number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Integer part IQN, Integer part IQN x int32, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

7-262

From Memory

Purpose Retrieve data from target memory

Library c2400spchiplib or c280xspchiplib or c281xspchiplib in Embedded
Target for TI C2000 DSP

Description This block retrieves data of the specified data type from a particular
memory address on the target.

Note Although the block dialog box shown here is for the C24x, the
same block and dialog box apply to the C280x and the C281x.

Dialog
Box

Memory address
Address of the target memory location, in hexadecimal, from
which to read data.

7-263

From Memory

Note To ensure the correct operation of this block, you must
specify exactly the desired memory location. Refer to your Linker
CMD file for available memory locations.

Data type
Data type of the data to obtain from the above memory address.
The data is read as 16-bit data and then cast to the selected data
type. Valid data types are double, single, int8, uint8, int16,
uint16, int32, and uint32.

Sample time
Time interval, in seconds, between consecutive reads from the
specified memory location.

Samples per frame
Number of elements of the specified data type to be read from the
memory region starting at the given address.

See Also To Memory

7-264

From RTDX

Purpose Add RTDX input channel

Library rtdxBlocks in Embedded Target for TI C2000 DSP

Description When you generate code from Simulink in Real-Time Workshop with
a From RTDX block in your model, code generation inserts the C
commands to create an RTDX input channel on the target. Input
channels transfer data from the host to the target.

The generated code contains this command:

RTDX_enableInput(&channelname)

where channelname is the name you enter in Channel name.

Note From RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations, except generating an output matching your specified
initial conditions.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX.

7-265

From RTDX

Dialog
Box

Channel name
Name of the input channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Blocking mode instructs the target processor to pause processing
until new data is available from the From RTDX block. If you
enable blocking and new data is not available when the processor
needs it, your process stops. In nonblocking mode, the processor
uses old data from the block when new data is not available.

7-266

From RTDX

Nonblocking operation is the default and is recommended for
most operations.

Initial conditions
Data the processor reads from RTDX for the first read. If blocking
mode is not enabled, you must have an entry for this option.
Leaving the option blank causes an error in Real-Time Workshop.
Valid values are 0, null ([]), or a scalar. The default value is 0.

0 or null ([]) outputs a zero to the processor. A scalar generates
one output sample with the value of the scalar. If Output
dimensions specifies an array, every element in the array has
the same scalar or zero value. A null array ([]) outputs a zero
for every sample.

Sample time
Time between samples of the signal. The default is 1 second. This
produces a sample rate of one sample per second (1/Sample time).

Output dimensions
Dimensions of a matrix for the output signal from the block. The
first value is the number of rows and the second is the number
of columns. For example, the default setting [1 64] represents
a 1-by-64 matrix of output values. Enter a 1-by-2 vector for the
dimensions.

Frame-based
Sets a flag at the block output that directs downstream blocks
to use frame-based processing on the data from this block. In
frame-based processing, the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. Frame-based processing can increase
the speed of your application running on your target. Note that
throughput remains the same in samples per second processed.
Frame-based operation is the default.

Data type
Type of data coming from the block. Select one of the following
types:

7-267

From RTDX

• Double — Double-precision floating-point values. This is the
default. Values range from -1 to 1.

• Single — Single-precision floating-point values ranging from
-1 to 1.

• Uint8 — 8-bit unsigned integers. Output values range from 0
to 255.

• Int16 — 16-bit signed integers. With the sign, the values range
from -32768 to 32767.

• Int32 — 32-bit signed integers. Values range from -231 to
(231-1).

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in the Link for Code Composer Studio Development Tools
to prepare your RTDX channels. This option applies only to the
channel you specify in Channel name. You do have to open the
channel.

See Also ccsdsp, readmsg, To RTDX, writemsg.

7-268

Idle Task

Purpose Create free-running task that executes downstream subsystem

Library c280xspchiplib or c281xspchiplib in Embedded Target for TI C2000
DSP

Description The Idle Task block, and the subsystem to which it is connected, specify
one or more functions to execute as background tasks. By definition, all
tasks executed through the Idle Task block are of the lowest priority,
lower than that of the base rate task.

Vectorized Output

The output of this block includes a set of two vectors, the Number of
tasks and the corresponding Preemption flag(s). The Preemption
flag(s) vector must be the same length as the Number of tasks vector
unless it has only one element.

If the Preemption flag(s) vector does have one element, then that
value applies to all functions in the downstream subsystem.

If the Preemption flag(s) vector has the same number of elements as
the Number of tasks vector, then each task’s preemption flag value
is the value of the corresponding element in the Preemption flag(s)
vector.

The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, such
that a preemptable task of higher priority can be preempted by a
non-preemptable task of lower priority.

7-269

Idle Task

Dialog
Box

Number of tasks
The values you enter determine the order in which the functions in
the downstream subsystem are to be executed, while the number
of values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem will be executed,
and so on.

For example, if you enter [2,3,1] in this field, you are indicating
that there are three functions to be executed, and that the third
function will be executed first, the first function will be executed
second, and the second function will be executed third.

7-270

Idle Task

When all functions have been executed, the Idle Task block cycles
back and repeats the execution of the functions in the same order.

Preemption flag(s)
The preemption flag determines whether a given interrupt is
preemptable or not. Preemption overrides prioritization, so if you
flag one of these functions as non-preemptable, its execution will
not be suspended by another task even though the functions in the
downstream subsystem all have the lowest priority by definition.

Enter either a vector of one element, in which case that
preemption flag applies to all functions to be executed in the
downstream subsystem, or a vector containing the same number
of elements as the Number of tasks vector, in which case
each preemption flag values applies to the task number in the
corresponding position within its vector. All preemption flag
values must be either 0 (non-preemptable) or 1 (preemptable).

Manage own timer
Some Simulink blocks need to keep track of time in order to
function properly. Select this check box if your model contains
such a block in the downstream subsystem.

Enable simulation input
Select this check box to make it possible to test asynchronous
interrupt processing in the context of your Simulink model.

Note Using this check box is the only way you can test
asynchronous interrupt processing behavior in Simulink.

See Also C280x Hardware Interrupt, C281x Hardware Interrupt

7-271

Integer part IQN

Purpose Integer part of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block returns the integer portion of an IQ number. The returned
value is a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN x int32, IQN to
Float, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude
IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-272

Integer part IQN x int32

Purpose Integer part of result of multiplying IQ number and long integer

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and returns
the integer portion of the resulting IQ number as a long integer.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, IQN to Float,
IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2, Magnitude IQN,
Saturate IQN, Square Root IQN, Trig Fcn IQN

7-273

Inverse Park Transformation

Purpose Convert rotating reference frame vectors to two-phase stationary
reference frame

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts vectors in an orthogonal rotating reference frame to
a two-phase orthogonal stationary reference frame. The transformation
implements these equations:

Id ID IQ
Iq ID IQ

= −
= +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The inputs to this block are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame and the
phase angle (Angle) between the stationary and rotating frames.

The outputs are the direct axis (Alpha) and the quadrature axis (Beta)
components of the transformed signal.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

7-274

Inverse Park Transformation

Equation Variables Block Variables

Inputs ID Ds

IQ Qs

θ Angle

Outputs id Alpha

iq Beta

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Park Transformation, PID Controller, Space
Vector Generator, Speed Measurement

7-275

IQN to Float

Purpose Convert IQ number to floating-point number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ input to an equivalent floating-point number.
The output is a single floating-point number.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN x int32, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-276

IQN x int32

Purpose Multiply IQ number with long integer

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies an IQ input and a long integer input and produces
an IQ output of the same Q value as the IQ input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x IQN, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-277

IQN x IQN

Purpose Multiply two IQ numbers with same Q format

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiplies two IQ numbers. Optionally, it can also round and
saturate the result.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Multiply option
Type of multiplication to perform:

• Multiply — Multiply the numbers.

• Multiply with Rounding — Multiply the numbers and round
the result.

• Multiply with Rounding and Saturation — Multiply the
numbers and round and saturate the result to the maximum
value.

7-278

IQN x IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-279

IQN1 to IQN2

Purpose Convert IQ number to different Q format

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block converts an IQ number in a particular Q format to a different
Q format.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN1 to IQN2, IQN1 x IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-280

IQN1 x IQN2

Purpose Multiply two IQ numbers with different Q formats

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block multiples two IQ numbers when the numbers are represented
in different Q formats. The format of the result is specified in the dialog
box.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Q value
Q value from 1 to 30 that specifies the precision of the output

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
Magnitude IQN, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-281

LF2407 eZdsp

Purpose LF2407 eZdsp DSK target preferences

Library c2000tgtpreflib in Embedded Target for TI C2000 DSP

Description Options on the block mask let you set features of code generation for
your Spectrum Digital LF2407 eZdsp target. Adding this block to
your Simulink model provides access to building, linking, compiling,
and targeting settings you need to configure the code that Real-Time
Workshop generates.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to any other blocks, but stands alone to
set the target preferences for the model.

Dialog
Box

7-282

LF2407 eZdsp

BuildOptions — CompilerOptions

Compiler Verbosity
Amount of information the compiler returns while it runs. Options
are

• Verbose — Returns all compiler messages.

• Quiet — Suppresses compiler progress messages.

• Super_quiet — Suppresses all compiler messages.

KeepASMFiles
Whether Real-Time Workshop and the Embedded Target for
TI C2000 DSP save your assembly language (.asm) files after
creation. The default is false—.asm files are not kept in your
current directory. If you choose to keep the .asm files, set this
option to true.

OptimizationLevel
Degree of optimization provided by the TI optimizing compiler
to apply to files in your project. For details about the compiler
options, refer to your CCS documentation. When you create
new projects, the Embedded Target for TI C2000 DSP sets the
optimization to Function(-o2).

SymbolicDebugging
Whether to generate symbolic debugging directives that the C
source-level debugger uses and whether to enable assembly source
debugging. By default, this option is Yes—symbolic debugging
is enabled.

BuildOptions — LinkerOptions

CreateMAPFile
Whether the linker produces a map of the input and output
sections, including null areas, and places the listing in a file in
your current directory with the name modelname.map. The default
is True—the listing is produced.

7-283

LF2407 eZdsp

KeepOBJFiles
Whether Real-Time Workshop and the Embedded Target for TI
C2000 DSP save your object (.obj) files after creation. The linker
uses object (.obj extension) files to generate a single executable
common object file format (COFF) file that you run on the target
DSP. The object files are saved to your current project directory.
Saving your .obj files can speed up the compile process by not
having to recompile files that you have not changed. The default
is True—the .obj files are retained.

LinkerCMDFile
Type of linker command file to use when the linker runs. Linker
command files contain linker or hex conversion utility options and
the names of input files to the linker or hex conversion utility.
Linker command file types are

• Internal_memory_map — Although this option is supported,
only very small programs that fit in the internal chip memory
can be used. If your program is too large, a linker error occurs.
In general, you should use Full_memory_map or Custom_file.

• Full_memory_map — Uses the large memory model on the
target, which does not restrict the size of the code and data
sections to DSP memory only. Your data can use the storage
space up to the limits of the board.

• Custom_file — Uses the file in the LinkerCmdFileName
field. This option lets you target custom boards. You must
specify the full path of the file. Note that the software does
not verify that the commands in this file are correct. If you
use Internal_memory_map or Full_memory_map, specifying
a Custom_file has no effect.

When you select the Internal_memory_map option, the
Embedded Target for TI C2000 DSP specifies that only the
available internal memory on the LF2407 is used.

If you select Internal_memory_map, but your data or program
requires far calls, the TI compiler returns an error message like
the following in the CCS IDE:

7-284

LF2407 eZdsp

error: can't allocate '.far'
or
error: can't allocate '.text'

indicating that your data does not fit in internal memory
or your code or program do not fit in internal memory. To
eliminate these errors, select Full_memory_map. Your program
might run more slowly than if you use the internal map option.

BuildOptions — RunTimeOptions

BuildAction
Action taken by Real-Time Workshop when you click Build or
press Ctrl+B in the Simulation Parameters dialog box. The
actions are cumulative—each listed action adds features to the
previous action on the list and includes all the previous features:

• Generate_code_only — Directs Real-Time Workshop to
generate C code only from the model. It does not use the TI
software tools, such as the compiler and linker, and you do not
need to have CCS installed. Also, MATLAB does not create the
handle to CCS that results from the other options.

The build process for a model also generates the files
modelname.c, modelname.cmd, modelname.bld, and
many others. It puts the files in a build directory named
modelname_C2000_rtw in your MATLAB working directory.
This file set contains many of the same files that Real-Time
Workshop generates to populate a CCS project when you choose
Create_CCS_Project for the build action.

• Create_CCS_Project — Directs Real-Time Workshop to start
CCS and populate a new project with the files from the build
process. Selecting this setting enables the CCS board number
option so you can select which installed board to target. This
option offers a convenient way to build projects in CCS.

• Build — Builds the executable COFF file, but does not
download the file to the target.

7-285

LF2407 eZdsp

• Build_and_execute — Directs Real-Time Workshop to
download and run your generated code as an executable on
your target. This option is the default.

Setting this option requires corresponding options to be set
in the CCS:

a From the CCS window, select Option > Customize... .

b Select the Program/Project Load tab on the Customize
dialog box as shown in the following figure:

c Uncheck the Load Program After Build option.

7-286

LF2407 eZdsp

Note When you build and execute a model on your target,
the Real-Time Workshop build process resets the target
automatically. You do not need to reset the board before
building models.

OverrunAction
Defines the action to take when an interrupt overrun occurs.

• Continue — Ignore overruns encountered while running the
model. This option is the default.

• Halt — Stop program execution.

CCSLink

CCSHandleName
Name of the CCS handle. Click in the edit box to change the
name. When you use Real-Time Workshop to build a model for a
C2000 target, Embedded Target for TI C2000 DSP makes a link
between MATLAB and CCS. If you have used the link portion
of the Embedded Target for TI C2000 DSP, you are familiar
with function ccsdsp, which creates links between the IDE and
MATLAB. This option refers to the same link, called cc in the
function reference pages. Although MATLAB to CCS is a link, it

7-287

LF2407 eZdsp

is actually a handle to an object that contains information about
the object, such as the target board and processor it accesses.

ExportCCSHandle
Whether to export the CCS handle to your MATLAB workspace,
giving it the name you assigned in CCSHandleName. If this
parameter is set to True, after you build your model, you see the
CCS object in your MATLAB workspace browser with the name
you provided and class type ccsdsp.

CodeGeneration — Scheduler

Algorithm
Algorithm to use for scheduling. Currently, the only algorithm
option is Preemptive_priority_based. This scheduler runs
based on the timer interrupt. The timer period is set based
on the base rate sample time you specify for your model. This
algorithm supports multirate systems in multitasking mode
with priority-based preemption. The task for the fastest group
(the base rate task) runs first and other tasks run in the order
determined by their sample rates from faster tasks to slower
tasks. For more information, see “Models with Multiple Sample
Rates” in the “Real-Time Workshop” documentation.

7-288

LF2407 eZdsp

Timer
Event Manager (EV) timer to use for scheduling.

TimerClockPrescaler
Clock divider factor by which to prescale the selected timer
to produce the desired model rate. The system clock for the
TMS320LF2407 DSP is 40 MHz.

7-289

LF2407 eZdsp

DSPBoard

7-290

LF2407 eZdsp

DSPBoardLabel
Name of the installed DSP board. Click in the edit box to change
the label.

Note The board label here must match exactly the label (name) of
the board entered in your Code Composer Studio setup.

DSPBoard — DSPChip

CAN
Parameters that affect the control area network (CAN) module.
Most of these parameters affect the CAN bit timing. For more
information see “Configuring Timing Parameters for CAN Blocks”

The CAN parameters you can set are:

BaudRatePrescaler
Value by which to scale the baud rate. Valid values are from
1 to 256.

SAM
Number of samples used by the CAN module to determine
the CAN bus level. Selecting Sample_one_time samples
once at the sampling point. Selecting Sample_three_times
samples once at the sampling point and twice before at a
distance of TQ/2. A majority decision is made from the three
points.

SBG
Sets the message resynchronization triggering.
Options are Only_falling_edges and
Both_falling_and_rising_edges.

7-291

LF2407 eZdsp

SJW
Sets the synchronization jump width, which determines
how many units of TQ a bit is allowed to be shortened or
lengthened when resynchronizing.

SelfTestMode
If this parameter is set to True, the CAN module goes to
loopback mode, where a “dummy” acknowledge message is
sent back without needing an acknowledge bit.

TSEG1
Sets the value of time segment 1, which, with TSEG2 and
BRP, determines the length of a bit on the CAN bus. Valid
values for TSEG1 are from 1 through 16.

TSEG2
Sets the value of time segment 2, which, with TSEG1 and
BRP, determines the length of a bit on the CAN bus. Valid
values for TSEG2 are from 1 through 8.

DSP Chip Label
DSP chip model. Select the DSP chip installed on your target. The
chip model is fixed for the LF2407 eZdsp. If you change the chip
model, an error is generated during code generation.

SCI
Parameters that affect the serial communications interfaces (SCI)
on the target.

The SCI parameters you can set are:

BaudRate
Baud rate for transmitting and receiving data. Choices are
115200 (the default), 57600, 38400, 19200, 9600, 4800, 2400,
1200, 300, and 110.

CharacterLengthBits
Length in bits of each transmitted or received character,
set to 8 bits.

7-292

LF2407 eZdsp

EnableLoopBack
Select True to enable the loopback function for self-test and
diagnostic purposes only. When this function is enabled, a
C24x DSP’s Tx pin is internally connected to its Rx pin and
can transmit data from its output port to its input port to
check the integrity of the transmission.

EnableParity
Select True to enable parity checking on the transmit or
receive data.

NumberOfStopBits
Select whether to use 1 or 2 stop bits.

ParityMode
Type of parity to use. Available selections are None, Odd
parity, or Even parity. None disables parity. Odd sets the
parity bit to one if you have an odd number of ones in your
bytes (e.g., 00110010) . Even sets the parity bit to one if you
have an even number of ones in your bytes (e.g., 00110011).
EnableParity must be set to True to use the selected
ParityMode.

SuspensionMode
Type of suspension to use when debugging your program
with Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive or transmit sequence is complete.
Free run continues running regardless of the breakpoint.

SPI
Parameters that affect the serial peripheral interfaces (SPI) on
the target.

You can set the following parameters:

7-293

LF2407 eZdsp

BaudRateFactor
Factor to customize the baud rate, where the CPU rate is
the target’s working frequency and

Baud Rate = CPU Rate / (Baud Rate Factor + 1)

ClockPhase
Whether the data is output immediately (No_delay) or
delayed by a half clock cycle (Delay_half_cycle) with
respect to the rising edge.

ClockPolarity
Whether the data is output at the Rising_edge or
Falling_edge of the system clock.

DataBits
Length in bits from 1 to 16 of each transmitted or received
character. For example, if you select 8, the maximum data
that can be transmitted using SPI is 28-1. If you send data
greater than this value, the buffer overflows.

Mode
Whether to run the SPI module in Master or Slave mode.
Master mode initiates the transmission. Slave mode is
triggered by another master SPI and is synchronized to the
clock used by the master SPI. This option cannot be changed
at run time.

SuspensionMode
Suspension to use when debugging your program with
Code Composer Studio. When your program encounters
a breakpoint, the selected suspension mode determines
whether to perform the program instruction. Available
options are Hard abort, Soft abort, and Free run. Hard
abort stops the program immediately. Soft abort stops
when the current receive or transmit sequence is complete.
Free run continues running regardless of the breakpoint.

See Also C24x ADC, C24x CAN Receive, C24x CAN Transmit, C24x PWM

7-294

Magnitude IQN

Purpose Magnitude of two orthogonal IQ numbers

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the magnitude of two IQ numbers using

a b2 2+

The output is an IQ number in the same Q format as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Saturate IQN, Square Root IQN, Trig Fcn IQN

7-295

Park Transformation

Purpose Convert two-phase stationary system vectors to rotating system vectors

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block converts vectors in balanced two-phase orthogonal
stationary systems into an orthogonal rotating reference frame. The
transformation implements these equations

ID Id Iq
IQ Id Iq

= +
= − +

* cos * sin
* sin * cos

θ θ
θ θ

and is illustrated in the following figure.

The variables used in the preceding figure and equations correspond to
the block variables as shown in the following table:

Equation Variables Block Variables

Inputs id Alpha

iq Beta

θ Angle

7-296

Park Transformation

Equation Variables Block Variables

Outputs ID Ds

IQ Qs

The inputs to this block are the direct axis (Alpha) and the quadrature
axis (Beta) components of the transformed signal and the phase angle
(Angle) between the stationary and rotating frames.

The outputs are the direct axis (Ds) and quadrature axis (Qs)
components of the transformed signal in the rotating frame.

The instantaneous inputs are defined by the following equations:

id I t
iq I t

=
= +

* sin()
* sin(/)

ω
ω π 2

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

7-297

Park Transformation

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, PID Controller,
Space Vector Generator, Speed Measurement

7-298

PID Controller

Purpose Digital PID controller

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block implements a 32-bit digital PID controller with antiwindup
correction. The inputs are a reference input (ref) and a feedback input
(fdb) and the output (out) is the saturated PID output. The following
diagram shows a PID controller with antiwindup.

The differential equation describing the PID controller before saturation
that is implemented in this block is

“upresat(t) = up(t) + ui(t) + ud(t)”

where upresat is the PID output before saturation, up is the proportional
term, ui is the integral term with saturation correction, and ud is the
derivative term.

The proportional term is

“up(t) = Kpe(t)”

where Kp is the proportional gain of the PID controller and e(t) is the
error between the reference and feedback inputs.

7-299

PID Controller

The integral term with saturation correction is

where Kc is the integral correction gain of the PID controller.

The derivative term is

where Td is the derivative time of the PID controller. In discrete terms,
the derivative gain is defined as Kd = Td/T, and the integral gain is
defined as Ki = T/Ti, where T is the sampling period and Ti is the
integral time of the PID controller.

The above differential equations are transformed into a difference
equations by backward approximation.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

7-300

PID Controller

Dialog
Box

Proportional gain
Amount of proportional gain (Kp) to apply to the PID

Integral gain
Amount of gain (Ki) to apply to the integration equation

Integral correction gain
Amount of correction gain (Kc) to apply to the integration equation

Derivative gain
Amount of gain (Kd) to apply to the derivative equation.

Minimum output
Minimum allowable value of the PID output

7-301

PID Controller

Maximum output
Maximum allowable value of the PID output

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, Space Vector Generator, Speed Measurement

7-302

Ramp Control

Purpose Create ramp-up and ramp-down function

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block implements a ramp-up and ramp-down function. The input
is a target value and the outputs are the set point value (setpt) and
a flag. The flag output is set to 7FFFFFFFh when the output setpt
value reaches the input target value. The target and setpt values
are signed 32-bit fixed-point numbers with Q values between 16 and 29.
The flag is a long number.

The target value is compared with the setpt value. If they are not
equal, the output setpt is adjusted up or down by a fixed step size
(0.0000305).

If the fixed step size is relatively large compared to the target value,
the output may oscillate around the target value.

Dialog
Box

7-303

Ramp Control

Maximum delay rate
Value that is multiplied by the sampling loop time period to
determine the time delay for each ramp step. Valid values are
integers greater than 0.

Minimum limit
Minimum allowable ramp value. If the input falls below this
value, it will be saturated to this minimum. The smallest value
you can enter is the minimum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value below this minimum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its minimum value is -4.

Maximum limit
Maximum allowable ramp value. If the input goes above this
value, it will be reduced to this maximum. The largest value
you can enter is the maximum value that can be represented in
fixed-point data format by the input and output blocks to which
this Ramp Control block is connected in your model. If you enter
a value above this maximum, an error occurs at the start of code
generation or simulation. For example, if your input is in Q29
format, its maximum value is 3.9999....

See Also Ramp Generator

7-304

Ramp Generator

Purpose Generate ramp output

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block generates ramp output (out) from the slope of the ramp
signal (gain), DC offset in the ramp signal (offset), and frequency of
the ramp signal (freq) inputs. All of the inputs and output are 32-bit
fixed-point numbers with Q values between 1 and 29.

Algorithm The block’s output (out) at the sampling instant k is governed by the
following algorithm:

“out(k) = angle(k) * gain(k) + offset(k) ”

For out(k) > 1, out(k) = out(k) - 1. For out(k) < -1, out(k) = out(k) + 1.

Angle(k) is defined as follows:

“angle(k) = angle(k-1) + freq(k) * Maximum step angle

for angle(k) > 1, angle(k) = angle(k) - 1

for angle(k) < -1, angle(k) = angle(k) + 1”

The frequency of the ramp output is controlled by a precision frequency
generation algorithm that relies on the modulo nature of the finite
length variables. The frequency of the output ramp signal is equal to

“f = (Maximum step angle * sampling rate) / 2m ”

where m represents the fractional length of the data type of the inputs.

All math operations are carried out in fixed-point arithmetic, where the
fixed-point fractional length is determined by the block’s inputs.

7-305

Ramp Generator

Dialog
Box

Maximum step angle
The maximum step size, which determines the rate of change of
the output (i.e., the minimum period of the ramp signal).

Examples The following model demonstrates the Ramp Generator block. The
Constant and Scope blocks are available in Simulink Commonly Used
Blocks.

In your model, select Simulation > Configuration Parameters. On
the Solver pane, set Type to Fixed-step and Solver to discrete
(no continuous states). Set the parameter values for the blocks
as shown in the following table.

7-306

Ramp Generator

Block Connects to Parameter Value

Constant Ramp Generator - gain Constant value

Sample time

Output data type

Output scalig value

1

0.001

sfix(32)

2^-9

Constant Ramp Generator -
offset

Constant value

Sample time

Output data type

Output scalig value

0

inf

sfix(32)

2^-9

Constant Ramp Generator - freq Constant value

Sample time

Output data type

Output scalig value

0.001

inf

sfix(32)

2^-9

Ramp
Generator

Scope (Simulink block) Maximum step angle 1

When you run the model, the Scope block generates the following output
(drag a zoom box around a portion of the output to change the display).

7-307

Ramp Generator

The expected frequency of the output is

“f = (maximum step angle * sampling rate) / 2m

f = (1 * 1000) / 2^9 = 1.9531 Hz ”

The expected period is then

“T = 1/f = 0.5120 s ”

which is what the above Scope output shows.

See Also Ramp Control

7-308

Saturate IQN

Purpose Saturate IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block saturates an input IQ number to the specified positive and
negative limits. The returned value is an IQ number of the same Q
value as the input.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Positive Limit
Maximum positive value to which to saturate

Negative Limit
Minimum negative value to which to saturate

7-309

Saturate IQN

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Square Root IQN, Trig Fcn IQN

7-310

SCI Receive

Purpose Configure host-side serial communications interface to receive data
from serial port

Library c2000scilib in Embedded Target for TI C2000 DSP

Description
Specify the configuration of data being received from the target by
this block.

The data package being received is limited to 16 bytes of ASCII
characters, including package headers and terminators. Calculate the
size of a package by figuring in package header, or terminator, or both,
and the data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32, or
uint32. The byte size of each data type is listed in the following table:

Data Type Byte Count

single 4 bytes

int8 & uint8 1 byte

int16 & uint16 2 bytes

int32 & uint32 4 bytes

For example, if your data package has package header ’S’ (1 byte) and
package terminator ’E’ (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for 7 uint16s. If your data is of type int32, there is room in the data
package for only 3 int32s, with two bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not, as
you cannot mix data types in the same package.

7-311

SCI Receive

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In the
example just given, the 14 for data type int8 and the 7 for data type
uint16 are the data lengths for each data package, respectively. When
the data length exceeds 16 bytes, unexpected behavior, including run
time errors, may result.

Dialog
Box

7-312

SCI Receive

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Receive blocks.

Additional package header
This field specifies the data located at the front of the received
data package, which is not part of the data being received, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in
this field, but the quotes are not received nor are they included
in the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the
target SCI transmit block.

Additional package terminator
This field specifies the data located at the end of the received
data package, which is not part of the data being received,
and generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not received nor are they
included in the total byte count.

Data type
Choice of single, int8, uint8, int16, uint16, int32, or uint32.

The input port of the SCI Transmit block accepts only one of these
values. Which value it accepts is inherited from the data type
from the input (the data length is also inherited from the input).
Data must consist of only one data type; you cannot mix types.

7-313

SCI Receive

Data length
How many of Data type the block receives (not bytes). Anything
more than 1 is a vector. The data length is inherited from the
input (the data length input to the SCI Transmit block).

Initial output
Default value from the Receive block. This value is used,
for example, if a connection time-out occurs and the When
connection timeout field is set to “Output the last received
value”, but nothing yet has been received.

When connection timeout
Specifies what to output if a connection time-out occurs. If
“Output the last received value” is selected, the last received value
is what is output, unless none has yet been received , in which
case the Initial output is considered the last received value.

If “Output customized value” is selected, a field for specifying a
custom value is added to the dialog box (as shown in the following
figure).

Sample time
Determines how often the SCI Receive block is called (in seconds).
A value of -1 indicates the time is inherited from the model
parameters. To execute this block asynchronously, set Sample
Time to -1, and refer to “Asynchronous Interrupt Processing” on
page 1-13 for a discussion of block placement and other necessary
settings.

Output receiving status
When this field is checked, the SCI Receive block adds another
output port for the transaction status, and appears as shown in
the following figure.

7-314

SCI Receive

The error status may be one of the following values:

• 0: No errors

• 1: A time-out occurred while the block was waiting to receive
data

• 2: There is an error in the received data (checksum error)

• 3: SCI parity error flag — Occurs when a character is received
with a mismatch

• 4: SCI framing error flag — Occurs when an expected stop bit
is not found

7-315

SCI Setup

Purpose Configure COM ports for host-side SCI Transmit and Receive blocks

Library c2000scilib in Embedded Target for TI C2000 DSP

Description
Standardize COM port settings for use by the host-side SCI Transmit
and Receive blocks. Setting COM port configurations globally with the
SCI Setup block avoids conflicts (e.g., the host-side SCI Transmit block
cannot use COM1 with settings different than those the COM1 used by
the host-side SCI Receive block) and requires that you set configurations
only once for each COM port. The SCI Setup block is a stand alone block.

Dialog
Box

7-316

SCI Setup

Communication Mode
Raw data or protocol. Raw data is unformatted and sent whenever
the transmitting side is ready to send, whether the receiving side
is ready or not. No deadlock condition can occur because there
is no wait state. Data transmission is asynchronous. With this
mode, it is possible the receiving side could miss data, but if the
data is noncritical, using raw data mode can avoid blocking any
processes.

If you specify protocol mode, some handshaking between host
and target occurs. The transmitting side sends $SND indicating
that it is ready to transmit. The receiving side sends back $RDY
indicating that it is ready to receive. The transmitting side then
sends data and, when the transmission is completed, it sends a
checksum.

Advantages to using protocol mode include

• Ensures that data is received correctly (checksum)

• Ensures that data is actually received by target

• Ensures time consistency; each side waits for its turn to send
or receive

Note Deadlocks can occur if one SCI Transmit block is trying to
communicate with more than one SCI Receive block on different
COM ports when both are blocking (using protocol mode).
Deadlocks cannot occur on the same COM port.

Baud rate
Choose from 110, 300, 1200, 2400, 4800, 9600, 19200, 38400,
57600, or 115200.

Character Length Bits
Choose from 5, 6, 7, or 8.

7-317

SCI Setup

Number of stop bits
Select 1 or 2.

Parity mode
Select none, odd, or even.

Timeout
Enter any value greater than or equal to 0, in seconds. When the
COM port involved is using protocol mode, this value indicates
how long the transmitting side waits for an acknowledgement
from the receiving side or how long the receiving side waits for
data. The system displays a warning message if the time-out
is exceeded, every n number of seconds, n being the value in
Timeout.

Note Simulink actually suspends processing for the length of the
time-out, and you will not be able to perform any Simulink action.
If the time-out is set for a long period of time, it may appear that
Simulink has frozen.

7-318

SCI Transmit

Purpose Configure host-side serial communications interface to transmit data to
serial port

Library c2000scilib in Embedded Target for TI C2000 DSP

Description
Specify the configuration of data being transmitted to the target from
this block.

The data package being sent is limited to 16 bytes of ASCII characters,
including package headers and terminators. Calculate the size of a
package by figuring in package header, or terminator, or both, and the
data size.

Acceptable data types are single, int8, uint8, int16, uint16, int32, or
uint32. The byte size of each data type is as follows:

Data Type Byte Count

single 4 bytes

int8 & uint8 1 byte

int16 & uint16 2 bytes

int32 & uint32 4 bytes

For example, if your data package has package header “S” (1 byte) and
package terminator “E” (1 byte), that leaves 14 bytes for the actual data.
If your data is of type int8, there is room in the data package for 14
int8s. If your data is of type uint16, there is room in the data package
for only 7 uint16s. If your data is of type int32, there is room in the data
package for only 3 int32s, with two bytes left over. Even though you
could fit two int8s or one uint16 in the remaining space, you may not, as
you cannot mix data types in the same package.

7-319

SCI Transmit

The number of data types that can fit into a data package determine
the data length (see Data length in the Dialog Box description). In the
example just given, the 14 for data type int8 and the 7 for data type
uint16 are the data lengths for each data package, respectively. When
the data length exceeds 16 bytes, unexpected behavior, including run
time errors, may result.

Dialog
Box

Port name
You may configure up to four COM ports (COM1 through COM4)
for up to four host-side SCI Transmit blocks.

Additional package header
This field specifies the data located at the front of the transmitted
data package, which is not part of the data being transmitted, and
generally indicates start of data. The additional package header
must be an ASCII value. You may use any string or number
(0–255). You must put single quotes around strings entered in

7-320

SCI Transmit

this field, but the quotes are not sent nor are they included in
the total byte count.

Note Any additional packager header or terminator must match
the additional package header or terminator specified in the
target SCI receive block.

Additional package terminator
This field specifies the data located at the end of the transmitted
data package, which is not part of the data being sent, and
generally indicates end of data. The additional package
terminator must be an ASCII value. You may use any string
or number (0–255). You must put single quotes around strings
entered in this field, but the quotes are not transmitted nor are
they included in the total byte count.

7-321

Space Vector Generator

Purpose Duty ratios for stator reference voltage

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block calculates appropriate duty ratios needed to generate a
given stator reference voltage using space vector PWM technique.
Space vector pulse width modulation is a switching sequence of the
upper three power devices of a three-phase voltage source inverter
and is used in applications such as AC induction and permanent
magnet synchronous motor drives. The switching scheme results in
three pseudo-sinusoidal currents in the stator phases. This technique
approximates a given stator reference voltage vector by combining the
switching pattern corresponding to the basic space vectors.

The inputs to this block are

• Alpha component — the reference stator voltage vector on the direct
axis stationary reference frame (Ua)

• Beta component — the reference stator voltage vector on the direct
axis quadrature reference frame (Ub)

The alpha and beta components are transformed via the inverse Clarke
equation and projected into reference phase voltages. These voltages
are represented in the outputs as the duty ratios of the PWM1 (Ta),
PWM3 (Tb), and PWM5 (Tc).

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

7-322

Space Vector Generator

Dialog
Box

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Speed Measurement

7-323

Speed Measurement

Purpose Motor speed

Library c28xdmclib in Embedded Target for TI C2000 DSP

Description This block calculates the motor speed based on the rotor position when
the direction information is available. The inputs are the electrical
angle (theta) and the direction of rotation (dir) from the QEP encoder.
The outputs are the speed in per-unit frequency (freq) and the speed
in revolutions per minute (rpm).

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

7-324

Speed Measurement

Base speed
Nominal speed of the machine in rpm.

Differentiator constant
Constant used in the differentiator equation that describes the
rotor position.

Low-pass filter constant
Constant to apply to the low-pass filter. This constant is
1/(1+T*(2πfc)), where T is the sampling period and fc is the cutoff
frequency. The 1/(2πfc) term is the low-pass filter time constant.
A low-pass filter is used in this block to reduce amplifying noise
generated by the differentiator.

References Detailed information on the DMC library is in the C/F 28xx Digital
Motor Control Library, Literature Number SPRC080, available at the
Texas Instruments Web site.

See Also Clarke Transformation, Inverse Park Transformation, Park
Transformation, PID Controller, Space Vector Generator

7-325

Square Root IQN

Purpose Square root or inverse square root of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates the square root or inverse square root of an IQ
number and returns an IQ number of the same Q format. The block
uses table lookup and a Newton-Raphson approximation.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Note Negative inputs to this block return a value of zero.

Dialog
Box

Function
Whether to calculate the square root or inverse square root

• Square root (_sqrt) — Compute the square root.

7-326

Square Root IQN

• Inverse square root (_isqrt) — Compute the inverse
square root.

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Trig Fcn IQN

7-327

To Memory

Purpose Write data to target memory

Library c2400spchiplib or c280xspchiplib or c281xspchiplib in Embedded
Target for TI C2000 DSP

Description This block sends data of the specified data type to a particular memory
address on the target.

Note Although the block dialog box shown here is for the C24x, the
same block and dialog box apply to the C280x and the C281x.

Dialog
Box

Parameters pane

Memory address
Address of the target memory location, in hexadecimal, to which
to write data

7-328

To Memory

Data type
Type of data to be written to the above memory address. Valid
data types are double, single, int8, uint8, int16, uint16,
int32, and uint32. The data is cast from the selected data type
to 16-bit data.

Write at initialization
Whether to write the specified Value at program start

Value
First value of data to be written to memory at program start

Write at termination
Whether to write the specified Value at program end

Value
Last value of data to be written to memory at program termination

Write at every sample time
Whether to write data in real time during program execution

Note If your To Memory block is set to write to memory at every
sample time interval (that is, it has an incoming port) and it
receives a vector signal input of N elements, a corresponding
memory region starting with the specified Memory address is
updated at every sample time. If you specify an Initial and/or
Termination value, that value is written to all locations in the
same memory region at initialization and/or termination.

If your To Memory block does not write to memory at every sample
time (that is, it does not have an incoming port) and you specify
an Initial and/or Termination value, that value is written to a
single memory location that corresponds to the specified Memory
address.

7-329

To Memory

Custom Code pane

Insert custom code before memory write
C-code to execute before writing to the specified memory address.
An example of code that may be inserted here is

asm (" EALLOW ")

which enables write access to the device emulation registers on
the C2812 DSP.

Insert custom code after memory write
C-code to execute after writing to the specified memory address.
An example of code that may be inserted here is

asm (" DIS ")

which disables write access to the device emulation registers on
the C2812 DSP.

See Also From Memory

7-330

To RTDX

Purpose Add RTDX output channel

Library rtdxBlocks in Embedded Target for TI C2000 DSP

Description When you generate code from Simulink in Real-Time Workshop with a
To RTDX block in your model, code generation inserts the C commands
to create an RTDX output channel on the target. Output channels
transfer data from the target to the host.

The generated code contains this command:

RTDX_enableOutput(&channelname)

where channelname is the name you enter in the channelName field
in the To RTDX dialog box.

Note To RTDX blocks work only in code generation and when your
model runs on your target. In simulations, this block does not perform
any operations.

To use RTDX blocks in your model, you must do the following:

1 Add one or more To RTDX or From RTDX blocks to your model.

2 Download and run your model on your target.

3 Enable the RTDX channels from MATLAB or use Enable RTDX
channel on start-up on the block dialog.

4 Use the readmsg and writemsg functions in MATLAB to send and
retrieve data from the target over RTDX.

7-331

To RTDX

Dialog
Box

Channel name
Name of the output channel to be created by the generated code.
The channel name must meet C syntax requirements for length
and character content.

Enable blocking mode
Enables blocking mode (selected by default). In blocking mode,
writing a message is suspended while the RTDX channel is busy,
that is, when data is being written in either direction. The code
waits at the RTDX_write call site while the channel is busy. Note
that any interrupt of the higher priority will temporary divert the
program execution from this site, but it will eventually come back
and wait until the channel stops writing.

When blocking mode is not enabled (when the check box is
cleared), writing a message is abandoned if the RTDX channel is
busy, and the code proceeds with the current iteration.

Enable RTDX channel on start-up
Enables the RTDX channel when you start the channel from
MATLAB. With this selected, you do not need to use the enable
function in the Link for Code Composer Studio Development Tools
to prepare your RTDX channels. This option applies only to the

7-332

To RTDX

channel you specify in Channel name. You do have to open the
channel.

See Also From RTDX

7-333

Trig Fcn IQN

Purpose Sine, cosine, or arc tangent of IQ number

Library tiiqmathlib in Embedded Target for TI C2000 DSP

Description This block calculates basic trigonometric functions and returns the
result as an IQ number. Valid Q values for _IQsinPU and _IQcosPU are
1 to 30. For all others, valid Q values are from 1 to 29.

Note The implementation of this block does not call the corresponding
Texas Instruments library function during code generation. The TI
function uses a global Q setting and the MathWorks code used by this
block dynamically adjusts the Q format based on the block input. See
“About the IQmath Library” on page 5-2 for more information.

Dialog
Box

Function
Type of trigonometric function to calculate:

• _IQsin — Compute the sine (sin(A)), where A is in radians.

• _IQsinPU — Compute the sine per unit (sin(2*pi*A)), where
A is in per-unit radians.

• _IQcos — Compute the cosine (cos(A)), where A is in radians.

• _IQcosPU — Compute the cosine per unit (cos(2*pi*A)),
where A is in per-unit radians.

7-334

Trig Fcn IQN

• _IQatan — Compute the arc tangent (tan(A)), where A is in
radians.

See Also Absolute IQN, Arctangent IQN, Division IQN, Float to IQN, Fractional
part IQN, Fractional part IQN x int32, Integer part IQN, Integer part
IQN x int32, IQN to Float, IQN x int32, IQN x IQN, IQN1 to IQN2,
IQN1 x IQN2, Magnitude IQN, Saturate IQN, Square Root IQN

7-335

Index

IndexA
Absolute IQN block 7-2
acquisition window

ADC blocks
ACQ_PS 3-2 3-5

ADC blocks
C24x 7-5
C281x 7-114

analog-to-digital converter, see ADC blocks
applications

TI C2000 1-2
Arctangent IQN block 7-3
asymmetric vs. symmetric waveforms 7-146
asynchronous interrupt processing 1-13

B
blocking mode

C24x 7-16
blocks

adding to model 1-32
recommendations 1-19

build options 7-180 7-204 7-221 7-244

C
C2000 Library

SCI Receive
Host side 7-311

SCI Setup
Host side 7-316

SCI Transmit
Host side 7-319

c2000lib startup 1-24
C24x ADC block 7-5
C24x CAN Receive block 7-10
C24x CAN Transmit block 7-14 7-18
C24x CAP block 6-6 7-18
C24x GPIO Digital Input block 7-23
C24x GPIO Digital Output block 7-26

C24x PWM block 7-29
C24x QEP block 7-39
C24x SCI Receive block 7-42
C24x SCI Transmit block 7-44
C24x SPI Receive block 7-46
C24x SPI Transmit block 7-48
C280x ADC block 7-49
C280x eCAN Receive block 7-54
C280x eCAN Transmit block 7-58
C280x ePWM block 7-62
C280x eQEP block 7-79
C280x Hardware Interrupt block 7-109
C280x SCI Receive block 7-93
C280x SCI Transmit block 7-100
C280x SPI Receive block 7-103
C280x SPI Transmit block 7-106
C281x ADC block 7-114
C281x CAP block 7-119
C281x eCAN Receive block 7-125
C281x eCAN Transmit block 7-129
C281x GPIO Digital Input block 7-133
C281x GPIO Digital Output block 7-136
C281x PWM block 7-144
C281x QEP block 7-154
C281x SCI Receive block 7-157
C281x SCI Transmit block 7-164
C281x SPI Receive block 7-167
C281x SPI Transmit block 7-170
C281x Timer block 7-173
CAN/eCAN

C24x Receive block 7-10
C24x Transmit block 7-14 7-18
C280x Transmit block 7-58
C280xReceive block 7-54
C281x Transmit block 7-129
C281xReceive block 7-125
timing 7-217 7-258
timing parameters

bit rate 2-2 to 2-3
capture block

Index-1

Index

C24x 6-6 7-18
C281x 7-119

CCS 1-9
link options 7-185 7-209 7-226 7-249
See also Code Composer Studio

Clarke Transformation block 7-176
clock speed 1-11
Code Composer Studio 1-9

projects 1-36
code generation

options 7-186 7-210 7-227 7-250
overview 1-35

code optimization 5-9
compiler options 7-180 7-204 7-221 7-244
configuration default 1-9
control area network, see CAN/eCAN
control logic 7-35
conversion

float to IQ number 7-260
IQ number to different IQ number 7-280
IQ number to float 7-276

CPU clock speed 1-11
Custom C280x Board block 7-179
Custom C281x Board block 7-203

D
data type support 1-10
data types

conversion 5-9
deadband

C281x PWM 7-151
C28x PWM 7-35

default build configuration 1-9
digital motor control, see DMC library
Division IQN block 7-219 7-305
DMC library

Clarke Transformation 7-176
Inverse Park Transformation 7-274
Park Transformation 7-296

PID controller 7-299
ramp control 7-303
ramp generator 7-305
Space Vector Generator 7-322
Speed Measurement 7-324

DSP board
target preferences options 7-187 7-211

7-228 7-252
duty ratios 7-322

E
enhanced quadrature encoder pulse module

C280x 7-79
ePWM blocks

C280x 7-62
Event Manager timer 7-31

F
F2808 eZdsp block 7-220
F2812 eZdsp block 7-243
fixed-point numbers 5-4
flash

stand alone applications 4-2 to 4-3 4-5
flash memory 1-5
Float to IQN block 7-260
floating-point numbers

convert to IQ number 7-260
four-quadrant arctangent 7-3
Fractional part IQN block 7-261
Fractional part IQN x int32 block 7-262
From Memory block 7-263
From RTDX block 7-265

G
GPIO input

C24x 7-23
C281x 7-133

GPIO output

Index-2

Index

C24x 7-26
C281x 7-136

H
hardware 1-3
high-speed peripheral clock 1-12

I
I/O

C24x input 7-23
C24x output 7-26
C281x input 7-133
C281x output 7-136

Idle Task block 7-269
Integer part IQN block 7-272
Integer part IQN x int32 block 7-273
Inverse Park Transformation block 7-274
IQ Math library 5-2

Absolute IQN block 7-2
Arctangent IQN block 7-3
building models 5-9
code optimization 5-9
common characteristics 5-2
Division IQN block 7-219
Float to IQN block 7-260
Fractional part IQN block 7-261
Fractional part IQN x int32 block 7-262
Integer part IQN block 7-272
Integer part IQN x int32 block 7-273
IQN to Float block 7-276
IQN x int32 block 7-277
IQN x IQN block 7-278
IQN1 to IQN2 block 7-280
IQN1 x IQN2 block 7-281
Magnitude IQN block 7-295
Q format notation 5-5
Saturate IQN block 7-309
Square Root IQN block 7-326

Trig Fcn IQN block 7-334
IQ numbers

convert from float 7-260
convert to different IQ 7-280
convert to float 7-276
fractional part 7-261
integer part 7-272
magnitude 7-295
multiply 7-278
multiply by int32 7-277
multiply by int32 fractional result 7-262
multiply by int32 integer part 7-273
square root 7-326
trigonometric functions 7-334

IQN to Float block 7-276
IQN x int32 block 7-277
IQN x IQN block 7-278
IQN1 to IQN2 block 7-280
IQN1 x IQN2 block 7-281

L
LF2407 eZdsp block 7-282
linker options 7-181 7-205 7-222 7-245

M
Magnitude IQN block 7-295
mailbox 7-11
math blocks, see IQ Math library
MathWorks software 1-5
memory management 1-22
messages

F2808 eZdsp 7-55
F2812 eZdsp 7-126
LF2401 eZdsp 7-11

model
add blocks 1-32
building overview 1-22
creation overview 1-18

Index-3

Index

IQmath library 5-9
multiplication

IQN x int32 7-277
IQN x int32 fractional part 7-262
IQN x int32 integer part 7-273
IQN x IQN 7-278
IQN1 x IQN2 7-281

O
operating system requirements 1-3
optimization code 5-9

P
Park Transformation block 7-296
phase conversion 7-176
PID controller 7-299
prescaler 7-36
projects

CCS 1-36
pulse width modulators, see PWM blocks
PWM blocks

C24x 7-29
C281x 7-144
control logic 7-35
deadband 7-35

Q
Q format 5-5
quadrature encoder pulse circuit

C24x 7-39
C28x 7-154

R
ramp control block 7-303
ramp generator block 7-305
Real Time Workshop build options

Custom C280x Board 7-183

F2808 eZdsp 7-224
F2812 eZdsp 7-285
LF2407 eZdsp 7-206 7-247

receive 7-10
reference frame conversion

inverse Park transformation 7-274
Park transformation 7-296

reset 1-23
RTDX

from 7-265
to 7-331

runtime options 7-183 7-206 7-224 7-247

S
sample time

F2812 eZdsp 7-56 7-127
LF2407 eZdsp 7-12
maximum 1-12

Saturate IQN block 7-309
scheduling 1-11
SCI Receive

Host side 7-311
SCI Setup

Host side 7-316
SCI Transmit

Host side 7-319
SCI Transmit and Receive blocks

Host side
Setup 7-316

serial communications interface
C24x receive 7-42
C24x transmit 7-44
C280x receive 7-93
C280x transmit 7-100
C281x receive 7-157
C281x transmit 7-164

serial peripheral interface
C24x receive 7-46
C24x transmit 7-48

Index-4

Index

C280x receive 7-103
C280x transmit 7-106
C281x receive 7-167
C281x transmit 7-170

setting up hardware 1-3
signed fixed-point numbers 5-4
simulation parameters

automatic 1-27
setting 1-21

software requirements 1-5
Space Vector Generator block 7-322
Speed Measurement block 7-324
Square Root IQN block 7-326
startup c2000lib 1-24

T
target configuration

example 6-2 7-243
F2808 eZdsp 6-2 7-220
LF2407 eZdsp 7-282

target model creation 1-18
target preferences

compiler options 7-180 7-204 7-221 7-244
DSP board options 7-187 7-211 7-228

7-252
linker options 7-181 7-205 7-222 7-245

Target Preferences blocks
Custom C280x Board 7-179
Custom C281x Board 7-203
F2808 eZdsp 7-220
F2812 eZdsp 7-243
LF2407 eZdsp 7-282

TI software 1-5
timing

CAN/eCAN 7-217 7-258
interrupts 1-11

To Memory block 7-328
To RTDX block 7-331
transmit 7-14
Trig Fcn IQN block 7-334

W
waveforms 7-146

Index-5

	toc
	Getting Started
	What Is the Embedded Target for the TI TMS320C2000 DSP Platform?
	Suitable Applications

	Setting Up and Configuring
	Platform Requirements — Hardware and Operating System
	Supported Hardware for Targets
	Running Code from Flash Memory

	Software Requirements
	MathWorks Software
	Texas Instruments Software

	Verifying the Configuration

	Embedded Target for TI C2000 and Code Composer Studio
	Default Project Configuration
	Default Build Options in the custom_MW Configuration

	Data Type Support
	Scheduling and Timing
	Timer-Based Interrupt Processing
	High-Speed Peripheral Clock

	Asynchronous Interrupt Processing

	Overview of Creating Models for Targeting
	Online Help
	Blocks with Restrictions
	Blocks to Avoid Using in Your Models
	Blocks That Require Specific Settings

	S-Function Builder Blocks
	Setting Simulation Configuration Parameters
	System Target Types and Memory Management

	Building Your Model
	F2812 eZdsp and F2808 eZdsp Reset Sequence
	LF2407 eZdsp Reset Sequence

	Using the c2000lib Blockset
	Hardware Setup
	Starting the c2000lib Library
	General
	Chip Support
	Optimized Libraries
	Other Blocks

	Setting Up the Model
	Adding Blocks to the Model
	Generating Code from the Model
	Creating Code Composer Studio Projects Without Loading

	Configuring Timing Parameters for CAN Blocks
	Blocks Where the Bit Rate Cannot Be Set Directly
	Setting Timing Parameters
	Equations for Bit Rate Calculation
	CAN Bit Timing Examples

	Configuring Acquisition Window Width for ADC Blocks
	What Is an Acquisition Window?
	Configuring ADC Parameters for Acquisition Window Width
	Examples

	Creating Stand-Alone Applications by Saving Code into Flash Memo
	The Need for Stand-Alone Applications
	Generating Code for Flash Memory
	Running Code from Flash Memory

	Using the IQmath Library
	About the IQmath Library
	Common Characteristics

	Fixed-Point Numbers
	Signed Fixed-Point Numbers
	Q Format Notation
	Example — Q.15
	Example — Q1.30
	Example — Q-2.17
	Example — Q17.-2

	Building Models
	Converting Data Types
	Using Sources and Sinks
	Choosing Blocks to Optimize Code

	Blocks — By Category
	C2000 Target Preferences (c2000tgtpreflib)
	Host-Side CAN Blocks (c2000canlib)
	Host-Side SCI Blocks (c2000scilib)
	C2000 RTDX Instrumentation (rtdxBlocks)
	C2400 DSP Chip Support (c2400dspchiplib)
	C280x DSP Chip Support (c280xdspchiplib)
	C281x DSP Chip Support (c281xdspchiplib)
	C28x Digital Motor Control (c28xdmclib)
	C28x IQmath (tiiqmathlib)

	Blocks — Alphabetical List
	Index

	tables
	Required TI Software for Targeting Your TI C2000 Hardware
	Maximum Sample Times
	Build Options
	CCSLink Options
	CodeGeneration Options
	DSPBoard Options
	IO MUX Output Control Register A
	IO MUX Output Control Register C
	IO MUX Output Control Register A
	IO MUX Output Control Register C
	C280x Peripheral Interrupt Vector Values
	GPIO A MUX
	GPIO B MUX
	GPIO A MUX
	GPIO B MUX
	C281x Peripheral Interrupt Vector Values

